Skip to main content
Log in

Engineering-Physical Model (GLOBSYS) for the Next Step of the Globus-M Spherical Tokamak Program: Model Description and Comparison with the Data of Globus-M2 Discharge

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The description of the zero-dimensional engineering-physical code GLOBSYS (Globus spherical tokamak system code), designed for parametric analysis of the next step of the program Globus-M, Globus-M2, is given. Within the framework of the zero-dimensional approximation, the definitions of the main scaling parameters of the plasma (poloidal beta, the fraction of bootstrap current, the energy lifetime of the plasma), as well as the specifics of calculating the inductance and resistance of the plasma in spherical tokamaks, are refined. The results of calculations of the plasma parameters by the code were compared with the experimental data of one of the Globus-M2 discharges (no. 38800) with neutral beam heating and showed good agreement. It is proposed to perform a comparison of calculations based on the code with the achieved and predicted parameters of the spherical tokamaks NSTX, NSTX-U, MAST, MAST-U, and ST40 in a separate paper. The goals of the next step (Globus-3) are formulated, the main ones of which are long pulse, high toroidal field, and powerful heating, which allow us to consider Globus-3 as a hydrogen prototype of a neutron source. The infrastructural restrictions on the Globus-3 parameters are given, which require further analysis of various versions of the electromagnetic system. Using the example of Globus-M2 discharge no. 38800, the effect of restrictions on the flow balance and heating of the elements of the electromagnetic system is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Z. Dragojlovic et al., Fusion Sci. Technol. 56, 913 (2009).

    Article  ADS  Google Scholar 

  2. Z. Dragojlovic et al., Fusion Eng. Des. 85, 243 (2010).

    Article  Google Scholar 

  3. H. Fujieda, Y. Murakami, and M. Sugihara, Preprint No. JAERI-M 92-178 (1992).

  4. H. Utoh and K. Tobita, in Proceedings of the 8th Workshop on DEMO in the Broader Approach Activities, 2011.

  5. M. Kovari, R. Kemp, P. J. Knight, and D. J. Ward, The PROCESS Fusion Reactor Systems Code, PROCESS Summary Paper, DRAFT 22/08/2011 (2011).

  6. P. J. Knight and M. D. Kovari, A User Guide to the PROCESS Fusion Reactor Systems Code, Vers. 12 (2016).

  7. C. Reux et al., Nucl. Fusion 55, 073011 (2015).

  8. S. Kahn, C. Reux, J.-F. Artaud, G. Aiello, J.-B. Blanchard, et al., Nucl. Fusion 60, 016015 (2019).

  9. J. Johner, Fusion Sci. Technol. 59, 308 (2011).

    Article  ADS  Google Scholar 

  10. T. Hartmann, PhD Thesis (2013).

  11. V. Menon, R. Srinivasan, P. K. Kaw, et al., in Proceedings of the 25th IAEA Fusion Energy Conference, St. Petersburg, Russia, 2014, FIP/P7-19.

  12. B. G. Hong and D. V. Lee, Nucl. Eng. Technol. 40, 87 (2008).

    Article  Google Scholar 

  13. M. Y. Ye, S. J. Wang, S. F. Mao, et al., Trans. Plasma Sci. 45, 512 (2017).

    Article  Google Scholar 

  14. D. Chen, in Proceedings of the 1st IAEA Technical Meeting on the Safety, Design and Technology of Fusion Power Plants, Vienna, Austria, May 3–5, 2016.

  15. N. A. Uckan and ITER Physics Group, ITER Physics Design Guidelines, ITER Documentation Series No. 10 (IAEA, Vienna, 1990).

  16. J. Candy, D. Bernholdt, D. Green, M. Dorr, M. Dorf, D. Schissel, C. Holland, D. Batchelor, S. Diem, V. Izzo, O. Meneghini, D. Orlov, E. D’Azevedo, J. M. Park, S. Smith, P. Snyder, and M. Umansky, in Proceedings of the SciDAC-3 PI Meeting, Bethesda, MD, July 22–24, 2015.

  17. S. I. Muldrew, H. Lux, G. Cunningham, et al., Fusion Eng. Des., 111530 (2020).

  18. J. E. Menard, Phil. Trans. R. Soc. London, Ser. A 377, 20170440 (2019).

  19. J. E. Menard, T. Brown, L. El-Guebaly, M. Boyer, J. Canik, et al., Nucl. Fusion 56, 106023 (2016).

  20. A. A. Golikov and B. V. Kuteev, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 35 (1), 45 (2012).

    Google Scholar 

  21. G. S. Kurskiev, N. V. Sakharov, P. B. Shchegolev, N. N. Bakharev, E. O. Kiselev, G. F. Avdeeva, V. K. Gusev, A. D. Iblyaminova, V. B. Minaev, et al., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 39 (4), 87 (2016).

    Google Scholar 

  22. S. P. Hirshman and G. P. Neilson, Phys. Fluids 29, 790 (1986).

    Article  ADS  Google Scholar 

  23. G. O. Ludwig and M. C. R. Andrade, Phys. Plasmas 5, 2274 (1998).

    Article  ADS  Google Scholar 

  24. O. Sauter and C. Angioni, Phys. Plasmas 6, 2834 (1999).

    Article  ADS  Google Scholar 

  25. V. A. Belyakov and A. B. Mineev, Tokamak: Equilibrium Plasma Configurations (SPbGU, PM-PU VVM, St. Petersburg, 2010) [in Russian].

  26. M. C. R. Andrade and G. O. Ludwig, Plasma Phys. Control. Fusion 50, 065001 (2008).

  27. A. E. Costley, J. Hugill, and P. F. Buxton, Nucl. Fusion 55, 033001 (2015).

  28. ITER Physics Basis, Nucl. Fusion 39 (Spec. Iss.) (1999).

  29. M. Valovič, R. Akers, G. Cunningham, L. Garzotti, B. Lloyd, et al., Nucl. Fusion 49, 075016 (2009).

  30. M. Valovič, R. Akers, M. de Bock, J. McCone, L. Garzotti, et al., Nucl. Fusion 51, 073045 (2009).

  31. G.S. Kurskiev, N.N. Bakharev, F.V. Chernyshev, V.K. Gusev, N.A. Khromov, E.O. Kiselev, S.V. Krikunov, V.B. Minaev, I.V. Miroshnnikov, A.N. Novokhatskii, N.S. Zhiltsov, E.E. Mukhin, M.I. Patrov, Yu.V. Petrov, N.V. Sakharov, et al., in Proceedings of the IAEA Fusion Energy Conference, 2021, IAEA-EXC-P7.

  32. G. S. Kurskiev et al., Nucl. Fusion 59, 066032 (2019).

  33. G. S. Kurskiev et al., Nucl. Fusion 61, 064001 (2021).

  34. S. P. Hirshman, Phys. Fluids 31, 3150 (1988).

    Article  ADS  Google Scholar 

  35. R. Hager and C. S. Chang, Phys. Plasmas 23, 042503 (2016).

  36. J. Wesson, Tokamaks (Oxford Univ. Press, Oxfodr, 2011).

  37. Hoang G.T. et al., in Proceedings of the 24th EPS Conference, Berschtesgaden, Germany, 1997, vol. 21A, Part III, p. 965.

  38. N. Pomphrey, Preprint No. PPPL-2854 (1992).

  39. H. R. Wilson, Nucl. Fusion 32, 257 (1992).

    Article  ADS  Google Scholar 

  40. K. Gi, M. Nakamura, K. Tobita, and Y. Ono, Fusion Eng. Des. 89, 2709 (2014).

    Article  Google Scholar 

  41. R. Sakai, T. Fujita, and A. Okamoto, Fusion Eng. Des. 149, 111322 (2019).

Download references

Funding

This work was supported by the Russian Science Foundation, agreement no. 21-79-20133 of March 24, 2021, between the Russian Science Foundation and the Efremov Institute of Electrophysical Apparatus (NIIEFA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Mineev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Baldina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mineev, A.B., Bondarchuk, E.N., Kavin, A.A. et al. Engineering-Physical Model (GLOBSYS) for the Next Step of the Globus-M Spherical Tokamak Program: Model Description and Comparison with the Data of Globus-M2 Discharge. Phys. Atom. Nuclei 85, 1194–1204 (2022). https://doi.org/10.1134/S1063778822070109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778822070109

Keywords:

Navigation