Skip to main content
Log in

Measurement of Cross Sections for Reactions \({}^{232}\)Th(\({}^{4}\)He, \(p5n\))\({}^{230}\)Pa, \({}^{232}\)Th(\({}^{4}\)He, \(p3n\))\({}^{232}\)Pa, \({}^{232}\)Th(\({}^{4}\)He, \(2pn+p2n\))\({}^{233}\)Pa, and \({}^{232}\)Th(\({}^{4}\)He, \(6n\))\({}^{230}\)U Induced by the Irradiation of ThO\({}_{2}\) Targets with \({}^{4}\)He

  • NUCLEI/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

At present, the radioisotope \({}^{230}\)U is considered as one of the most promising \(\alpha\)-emitters for application in immunotherapy. In order to refine nuclear data and to evaluate the efficiency of \({}^{230}\)U production, the cross sections for the reactions \({}^{232}\)Th(\({}^{4}\)He, \(p5n\))\({}^{230}\textrm{Pa}\to^{230}\)U and \({}^{232}\)Th(\({}^{4}\)He, \(6n\))\({}^{230}\)U, as well as the cross sections for the accompanying reactions \({}^{232}\)Th(\({}^{4}\)He, \(p3n\))\({}^{232}\)Pa and \({}^{232}\)Th(\({}^{4}\)He, \(2pn+p2n\))\({}^{233}\)Pa, were measured for the first time in the range of energies of \({}^{4}\)He nuclei between 30 and 62 MeV. The activation technique was used to measure the reaction cross sections. The experimental cross sections were compared with data from the TENDL-2021 library. The results give grounds to conclude that the reactions \({}^{232}\)Th(\({}^{4}\)He, \(p5n\))\({}^{230}\textrm{Pa}\to^{230}\)U and \({}^{232}\)Th(\({}^{4}\)He, \(6n\))\({}^{230}\)U cannot ensure efficient production of \({}^{230}\)U at the U-150 cyclotron of National Research Center Kurchatov Institute. Therefore, they cannot be viewed as an alternative to proton- and deuteron-induced reactions producing \({}^{230}\)U.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. M. T. Friend, T. Mastren, T. G. Parker, C. E. Vermeulen, M. Brugh, E. R. Birnbaum, F. M. Nortier, and M. E. Fassbender, Appl. Radiat. Isot. 156, 108973 (2020).

    Article  Google Scholar 

  2. A. Morgenstern, O. Lebeda, J. Stursa, R. Capote, M. Sin, F. Bruchertseifer, B. Zielinska, and C. Apostolidis, Phys. Rev. C 80, 054612 (2009).

    Article  ADS  Google Scholar 

  3. Z. B. Alfassi, M. Bonardi, F. Groppi, and E. Menapace, J. Radioanal. Nucl. Chem. 270, 483 (2006).

    Article  Google Scholar 

  4. E. Browne and J. K. Tuli, Nucl. Data Sheets 113, 2113 (2012).

    Article  ADS  Google Scholar 

  5. A. Morgenstern, C. Apostolidis, R. Molinet, and K. Luetzenkirchen, US Patent No. US 2010/0189642 A1 (2010).

  6. A. J. Koning, D. Rochman, J.-Ch. Sublet, N. Dzysiuk, M. Fleming, and S. van der Marck, Nucl. Data Sheets 155, 1 (2019).

    Article  ADS  Google Scholar 

  7. M. N. German, V. A. Zagryadskii, A. V. Kurochkin, K. A. Makoveeva, T. Yu. Malamut, V. I. Novikov, I. I. Skobelin, and V. N. Unezhev, Phys. At. Nucl. 85, 12 (2022).

    Article  Google Scholar 

  8. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).

    Google Scholar 

  9. E. Browne, Nucl. Data Sheets 107, 2579 (2006).

    Article  ADS  Google Scholar 

  10. B. Singh, J. K. Tuli, and E. Browne, Nucl. Data Sheets 170, 499 (2020).

    Article  ADS  Google Scholar 

  11. S. Singh, A. K. Jain, and J. K. Tuli, Nucl. Data Sheets 112, 2851 (2011).

    Article  ADS  Google Scholar 

  12. E. Browne and J. K. Tuli, Nucl. Data Sheets 114, 751 (2013).

    Article  ADS  Google Scholar 

  13. B. Singh, M. S. Basunia, M. Martin, E. A. McCutchan, I. Bala, R. Caballero-Folch, R. Canavan, R. Chakrabarti, A. Chekhovska, M. M. Grinder, S. Kaim, D.Kanjilal, D. Kasperovych, M. J. Kobra, H. Koura, S. Nandi, et al., Nucl. Data Sheets 160, 405 (2019).

    Article  ADS  Google Scholar 

  14. A. W. Knight, E. S. Eitrheim, A. W. Nelson, S. Nelson, and M. K. Schultz, J. Environ. Radioact. 134, 66 (2014). https://doi.org/10.1016/j.jenvrad.2014.02.010

    Article  Google Scholar 

Download references

Funding

This work was carried out with the financial support of the National Research Center Kurchatov Institute (order no. 2751 of October 28, 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Makoveeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

German, M.N., Zagryadskiy, V.A., Kurochkin, A.V. et al. Measurement of Cross Sections for Reactions \({}^{232}\)Th(\({}^{4}\)He, \(p5n\))\({}^{230}\)Pa, \({}^{232}\)Th(\({}^{4}\)He, \(p3n\))\({}^{232}\)Pa, \({}^{232}\)Th(\({}^{4}\)He, \(2pn+p2n\))\({}^{233}\)Pa, and \({}^{232}\)Th(\({}^{4}\)He, \(6n\))\({}^{230}\)U Induced by the Irradiation of ThO\({}_{2}\) Targets with \({}^{4}\)He. Phys. Atom. Nuclei 85, 515–519 (2022). https://doi.org/10.1134/S1063778822060072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778822060072

Navigation