Skip to main content
Log in

Search for Nucleon Charge-Exchange Processes in the Fragmentation of Carbon Ions at an Energy of 300 MeV per Nucleon

  • ELEMENTARY PARTICLES AND FIELDS/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The results of searches for nucleon charge-exchange processes in the fragmentation of carbon ions are presented. The respective experimental data were obtained by means of the FRAGM facility at the TWAC-ITEP multipurpose accelerator complex with a 300-MeV/nucleon beam incident to a thin beryllium target. The experimental setup used, which was oriented at an angle of 3.5\({}^{\circ}\) with respect to the ion beam, possessed a hodoscope system, which ensured an accuracy of 0.4\(\%\) in momentum measurements. The differential cross sections for the yields of isotopes \({}^{11}\)Be and \({}^{12}\)B produced upon single nucleon charge exchange were measured as a function of the fragment momentum. These experimental data were compared with theoretical predictions of two models of ion–ion interactions: the binary cascade (BC) model and the intranuclear cascade (INCL) model. In the above energy range, processes of nucleon charge exchange were measured for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. M. de Napoli, C. Agodi, G. Battistoni, A. A. Blancato, G. P. Cirrone, G. Cuttone, F. Giacoppo, M. C. Morone, D. Nicolosi, L. Pandola, V. Patera, G. Raciti, E. Rapisarda, F. Romano, D. Sardina, et al., Phys. Med. Biol. 57, 7651 (2012).

    Article  Google Scholar 

  2. B. M. Abramov, P. N. Alexeev, Yu. A. Borodin, S. A. Bulychjov, I. A. Dukhovskoy, K. K. Gudima, A. I. Khanov, A. P. Krutenkova, V. V. Kulikov, M. A. Martemianov, S. G. Mashnik, M. A. Matsyuk, and E. N. Turdakina, EPJ Web Conf. 138, 03002 (2017).

  3. B. M. Abramov, P. N. Alekseev, Yu. A. Borodin, S. A. Bulychjov, I. A. Dukhovskoy, A. P. Krutenkova, V. V. Kulikov, M. A. Martemianov, M. A. Matsyuk, S. G. Mashnik, E. N. Turdakina, and A. I. Khanov, Phys. At. Nucl. 78, 373 (2015).

    Article  Google Scholar 

  4. M. Roy-Stephan, Nucl. Phys. A 482, 373 (1988).

    Article  ADS  Google Scholar 

  5. T. R. Saito, H. Ekawa, and M. Nakagawa, Eur. Phys. J. A 57, 159 (2021).

    Article  ADS  Google Scholar 

  6. J. L. Rodriguez-Sánchez, J. Benlliure, I. Vidan̋a, H. Lenske, C. Scheidenberger, J. Vargas, H. Alvarez-Pol, J. Atkinson, T. Aumann, Y. Ayyad, S. Beceiro-Novo, K. Boretzky, M. Caaman̋o, E. Casarejos, D. Cortina-Gil, P. Diaz Fernández, et al., Phys. Lett. B 807, 135565 (2020).

  7. H. Lenske, F. Cappuzzello, M. Cavallaro, and M. Colonna, Prog. Part. Nucl. Phys. 109, 103716 (2019).

    Article  Google Scholar 

  8. N. N. Alekseev, D. G. Koshkarev, and B. Yu. Sharkov, JETP Lett. 77, 123 (2003).

    Article  ADS  Google Scholar 

  9. N. N. Alekseev, G. N. Akimov, P. N. Alekseev, V. N. Balanutsa, B. I. Bulykin, B. A. Volkov, S. V. Gaponenko, V. V. Gachurin, Yu. M. Goryachev, V. N. Evtikhovich, A. S. Zhuravlev, V. P. Zavodov, V. S. Zavrazhnov, P. R. Zenkevich, N. E. Ivanov, M. M. Kats, et al., Part. Nucl. Lett. 120, 78 (2004).

    Google Scholar 

  10. B. M. Abramov, P. N. Alekseev, Yu. A. Borodin, S. A. Bulychjov, I. A. Dukhovskoy, A. P. Krutenkova, V. V. Kulikov, M. A. Martemyanov, M. A. Matsyuk, E. N. Turdakina, and A. I. Khanov, JETP Lett. 97, 439 (2013).

    Article  ADS  Google Scholar 

  11. G. Folger, V. N. Ivanchenko, and J. P. Wellisch, Eur. Phys. J. A 21, 407 (2004).

    Article  ADS  Google Scholar 

  12. D. Mancusi, A. Boudard, J. Cugnon, J.-C. David, P. Kaitaniemi, and S. Leray, Phys. Rev. C 90, 054602 (2014).

    Article  ADS  Google Scholar 

  13. T. Pal Singh and S. Gautam, arXiv: 1110.6687v1 [nucl-th].

  14. S. G. Mashnik, Eur. Phys. J. Plus 126, 49 (2011).

    Article  Google Scholar 

  15. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

    Google Scholar 

  16. L. Sihver, C. H. Tsao, R. Silberberg, T. Kanai, and A. F. Barghouty, Phys. Rev. C 47, 1225 (1993).

    Article  ADS  Google Scholar 

  17. A. S. Goldhaber, Phys. Lett. B 53, 306 (1974).

    Article  ADS  Google Scholar 

  18. W. A. Friedman, Phys. Rev. C 27, 569 (1983).

    Article  ADS  Google Scholar 

  19. B. M. Abramov, P. N. Alexeev, Yu. A. Borodin, S. A. Bulychjov, I. A. Dukhovskoy, A. I. Khanov, A. P. Krutenkova, V. V. Kulikov, M. A. Martemianov, M. A. Matsyuk, and E. N. Turdakina, J. Phys.: Conf. Ser. 798, 012077 (2017).

    Google Scholar 

  20. D. E. Greiner, P. J. Lindstrom, H. H. Heckman, B. Cork, and F. S. Bieser, Phys. Rev. Lett. 35, 152 (1975).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the staff of the TWAC-ITEP accelerator complex and to the technical personnel of the FRAGM experiment for their valuable contribution to our measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kulikovskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikovskaya, A.A., Abramov, B.M., Borodin, Y.A. et al. Search for Nucleon Charge-Exchange Processes in the Fragmentation of Carbon Ions at an Energy of 300 MeV per Nucleon. Phys. Atom. Nuclei 85, 466–473 (2022). https://doi.org/10.1134/S1063778822050076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778822050076

Navigation