Skip to main content
Log in

GAMMA-400 Gamma-Ray Observations in the GeV and TeV Energy Range

  • Elementary Particles and Fields/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The future space-based GAMMA-400 \(\gamma\)-ray telescope will operate onboard the Russian astrophysical observatory in a highly elliptic orbit during 7 years. Observing \(\gamma\)-ray sources from Galactic plane, \(\gamma\)-ray bursts, \(\gamma\)-ray diffuse emission, \(\gamma\) rays from the Sun, and \(\gamma\) rays from dark matter particles will be performed uninterruptedly for a long time (\({\sim}\)100 days) in point-source mode in contrast to scanning mode for Fermi-LAT and other space- and ground-based instruments. GAMMA-400 will measure \(\gamma\) rays in the energy range from \({\sim}\)20 MeV to several TeV units, have the unprecedented angular (\({\sim}0.01^{\circ}\) at \(E_{\gamma}=100\) GeV) and energy (\({\sim}2{\%}\) at \(E_{\gamma}=100\) GeV) resolutions better than for Fermi-LAT, as well as ground-based \(\gamma\)-ray facilities, by a factor of 5–10, and perfectly separate \(\gamma\) rays from cosmic-ray background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. S. Abdollahi, F. Acero, M. Ackermann, M. Ajello, W. B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, J. Becerra Gonzalez, R. Bellazzini, A. Berretta, E. Bissaldi, R. D. Blandford, E. D. Bloom, et al., Astrophys. J. Suppl. Ser. 247, 33 (2020).

    Article  ADS  Google Scholar 

  2. M. Ajello, M. Arimoto, M. Axelsson, L. Baldini, G. Barbiellini, D. Bastieri, R. Bellazzini, P. N. Bhat, E. Bissaldi, R. D. Blandford, R. Bonino, J. Bonnell, E. Bottacini, J. Bregeon, P. Bruel, R. Buehler, et al., Astrophys. J. 878, 52 (2019).

    Article  ADS  Google Scholar 

  3. A. M. Galper, O. Adriani, R. L. Aptekar, I. V. Arkhangelskaja, A. I. Arkhangelskiy, M. Boezio, V. Bonvicini, K. A. Boyarchuk, Yu. V. Gusakov, M. O. Farber, M. I. Fradkin, V. A. Kachanov, V. A. Kaplin, M. D. Kheymits, A. A. Leonov, F. Longo, et al., Adv. Space Res. 51, 297 (2013).

    Article  ADS  Google Scholar 

  4. A. M. Galper, N. P. Topchiev, and Yu. T. Yurkin, Astron. Rep. 62, 882 (2018).

    Article  ADS  Google Scholar 

  5. N. P. Topchiev, A. M. Galper, I. V. Arkhangelskaja, A. I. Arkhangelskiy, A. V. Bakaldin, Yu. V. Gusakov, O. D. Dalkarov, A. E. Egorov, V. G. Zverev, A. A. Leonov, P. Yu. Naumov, N. Yu. Pappe, M. F. Runtso, Yu. I. Stozhkov, S. I. Suchkov, M. D. Kheimitz, et al., Bull. Russ. Acad. Sci.: Phys. 83, 629 (2019).

    Article  Google Scholar 

  6. A. E. Egorov, N. P. Topchiev, A. M. Galper, O. D. Dalkarov, A. A. Leonov, S. I. Suchkov, and Yu. T. Yurkin, J. Cosmol. Astropart. Phys. 049, 11 (2020).

    Google Scholar 

  7. A. A. Leonov, A. M. Galper, V. Bonvicini, N. P. Topchiev, O. Adriaini, R. L. Aptekar, I. V. Arkhangelskaja, A. I. Arkhangelskiy, L. Bergstrom, E. Berti, G. Bigongiari, S. G. Bobkov, M. Boezio, E. A. Bogomolov, S. Bonechi, M. Bongi, et al., Adv. Space Res. 56, 1538 (2015).

    Article  ADS  Google Scholar 

  8. A. DeAngelis, V. Tatischeff, I. A. Grenier, J. McEnery, M. Mallamaci, M. Tavani, U. Oberlack, L. Hanlon, R. Walter, A. Argan, P. VonBallmoos, A. Bulgarelli, A. Bykov, M. Hernanz, G. Kanbach, I. Kuvvetli, et al., J. High Energy Astrophys. 19, 1 (2018).

    Article  ADS  Google Scholar 

  9. C. A. Kierans, A. Harding, B. Cenko, D. Thompson, G. De Nolfo, J. Perkins, J. Mitchell, J. Racusin, J. McEnery, L. Hays, T. Venters, A. Moiseev, A. Lien, B. Rani, C. Shrader, E. Ferrara, et al., arXiv: 2101.03105 (2021).

  10. P. W. Cattaneo, O. Adriani, G. Ambrosi, Y. Bai, B. Bertucci, X. Bi, J. Casaus, I. De Mitri, M. Dong, Y. Dong, I. Donnarumma, F. Gargano, E. Liang, H. Liu, C. Lyu, G. Marsella, et al., Nucl. Part. Phys. Proc. 306–308, 53 (2019).

    Article  Google Scholar 

  11. S. Schael, A. Atanasyan, J. Berdugo, T. Bretz, M. Czupalla, B. Dachwald, P. von Doetinchem, M. Duranti, H. Gast, W. Karpinski, T. Kirn, K. Lübelsmeyer, C. Maba, P. S. Marrocchesi, P. Mertsch, I. V. Moskalenko, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 944, 162561 (2019).

    Google Scholar 

  12. M. Ackermann, M. Ajello, A. Albert, W. B. Atwood, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, R. Bellazzini, E. Bissaldi, R. D. Blandford, E. D. Bloom, R. Bonino, E. Bottacini, T. J. Brandt, J. Bregeon, et al., Astrophys. J. 840, 43 (2017).

    Article  ADS  Google Scholar 

  13. P. Fusco (on behalf of the DAMPE Collab.), Int. J. Mod. Phys. A 35, 2044024 (2020).

    Article  ADS  Google Scholar 

  14. G. A. Pallathadka, F. Calore, P. Carenza, M. Giannotti, D. Horns, J. Majumdar, A. Mirizzi, A. Ringwald, A. Sokolov, and F. Stief, arXiv: 2008.08100.

Download references

Funding

This study was funded by the Russian State Space Corporation ROSCOSMOS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Topchiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topchiev, N.P., Galper, A.M., Arkhangelskaja, I.V. et al. GAMMA-400 Gamma-Ray Observations in the GeV and TeV Energy Range. Phys. Atom. Nuclei 84, 1053–1058 (2021). https://doi.org/10.1134/S106377882113038X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377882113038X

Navigation