Skip to main content
Log in

Oscillating Neutrino Mass States and Double Beta Decay

  • Elementary Particles and Fields/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Neutrino oscillation is an experimentally established phenomenon by which neutrinos undergo flavor transformations periodically as they propagate large enough distances. Oscillation experiments provide information about the mass-squared differences and the leptonic mixing angles, but they are insensitive to the absolute mass scale for the neutrinos. As neutrino oscillations give no information about the absolute value of the neutrino mass squared eigenvalues, hence, there are various possibilities of neutrino hierarchy spectrums consistent with solar and atmospheric neutrino oscillation data. In this paper, we have attempted to present a picture of neutrino mass spectrum in the case of normal, inverted and almost degenerate hierarchy of neutrino masses by taking some specific choice of effective mass of electron neutrino related to 0\(\nu\beta\beta\) decay. We find neutrino mass eigenvalues \(m_{i}\) in different neutrino mass spectrum and also calculate percentage change in mass eigenvalues by taking uncertainties in the best fit neutrino oscillation parameters. The normal and inverted mass ordering of neutrino masses in context of future double–beta–decay experiments is discussed at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. R. Davis, Jr., D. S. Harmer, and K. C. Hoffman, Phys. Rev. Lett. 20, 1205 (1968).

    Article  ADS  Google Scholar 

  2. Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. D. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, et al. (SNO Collab.), Phys. Rev. Lett. 89, 011301 (2002).

    Article  ADS  Google Scholar 

  3. J. Hosaka, K. Ishihara, J. Kameda, Y. Koshio, A. Minamino, C. Mitsuda, M. Miura, S. Moriyama, M. Nakahata, T. Namba, Y. Obayashi, N. Sakurai, A. Sarrat, M. Shiozawa, Y. Suzuki, Y. Takeuchi, et al. (Super-Kamiokande Collab.), Phys. Rev. D 73, 112001 (2006).

    Article  ADS  Google Scholar 

  4. K. Abe, Y. Hayato, T. Iida, M. Ikeda, C. Ishihara, K. Iyogi, J. Kameda, K. Kobayashi, Y. Koshio, Y. Kozuma, M. Miura, S. Moriyama, M. Nakahata, S. Nakayama, Y. Obayashi, H. Ogawa, et al. (Super-Kamiokande Collab.), Phys. Rev. D 83, 052010 (2011).

    Article  ADS  Google Scholar 

  5. B. Aharmim, S. N. Ahmed, A. E. Anthony, N. Barros, E. W. Beier, A. Bellerive, B. Beltran, M. Bergevin, S. D. Biller, K. Boudjemline, M. G. Boulay, B. Cai, Y. D. Chan, D. Chauhan, M. Chen, B. T. Cleveland, et al. (SNO Collab.), Phys. Rev. C 88, 025501 (2013).

    Article  ADS  Google Scholar 

  6. Y. Fukuda, T. Hayakawa, E. Ichihara, K. Inoue, K. Ishihara, H. Ishino, Y. Itow, T. Kajita, J. Kameda, S. Kasuga, K. Kobayashi, Y. Kobayashi, Y. Koshio, M. Miura, M. Nakahata, S. Nakayama, et al. (Super-Kamiokande Collab.), Phys. Rev. Lett. 81, 1562 (1998).

    Article  ADS  Google Scholar 

  7. A. Surdo (Macro Collab.), Nucl. Phys. B Proc. Suppl. 110, 342 (2002).

    Article  ADS  Google Scholar 

  8. Y. Ashie, J. Hosaka, K. Ishihara, Y. Itow, J. Kameda, Y. Koshio, A. Minamino, C. Mitsuda, M. Miura, S. Moriyama, M. Nakahata, T. Namba, R. Nambu, Y. Obayashi, M. Shiozawa, Y. Suzuki, et al. (Super-Kamiokande Collab.), Phys. Rev. D 71, 112005 (2005).

    Article  ADS  Google Scholar 

  9. T. Kajita, Proc. Jpn. Acad. B 86, 303 (2010).

    Article  Google Scholar 

  10. F. P. An, J. Z. Bai, A. B. Balantekin, H. R. Band, D. Beavis, W. Beriguete, M. Bishai, S. Blyth, K. Boddy, R. L. Brown, B. Cai, G. F. Cao, J. Cao, R. Carr, W. T. Chan, J. F. Chang, et al., Phys. Rev. Lett. 108, 171803 (2012).

    Article  ADS  Google Scholar 

  11. J. K. Ahn, S. Chebotaryov, J. H. Choi, S. Choi, W. Choi, Y. Choi, H. I. Jang, J. S. Jang, E. J. Jeon, I. S. Jeong, K. K. Joo, B. R. Kim, B. C. Kim, H. S. Kim, J. Y. Kim, S. B. Kim, et al. (RENO Collab.), Phys. Rev. Lett. 108, 191802 (2012).

    Article  ADS  Google Scholar 

  12. Y. Abe, C. Aberle, J. C. dos Anjos, J. C. Barriere, M. Bergevin, A. Bernstein, T. J. C. Bezerra, L. Bezrukhov, E. Blucher, N. S. Bowden, C. Buck, J. Busenitz, A. Cabrera, E. Caden, L. Camilleri, R. Carr, et al., Phys. Lett. B 723, 66 (2013).

    Article  ADS  Google Scholar 

  13. M. H. Ahn, E. Aliu, S. Andringa, S. Aoki, Y. Aoyama, J. Argyriades, K. Asakura, R. Ashie, F. Berghaus, H. G. Berns, H. Bhang, A. Blondel, S. Borghi, J. Bouchez, S. C. Boyd, J. Burguetcastell, et al. (K2K Collab.), Phys. Rev. D 74, 072003 (2006).

    Article  ADS  Google Scholar 

  14. D. G. Michael, P. Adamson, T. Alexopoulos, W. W. M. Allison, G. J. Alner, K. Anderson, C. Andreopoulos, M. Andrews, R. Andrews, K. E. Arms, R. Armstrong, C. Arroyo, D. J. Auty, S. Avvakumov, D. S. Ayres, B. Baller, et al. (MINOS Collab.), Phys. Rev. Lett. 97, 191801 (2006).

    Article  ADS  Google Scholar 

  15. K. Abe, J. Adam, H. Aihara, T. Akiri, C. Andreopoulos, S. Aoki, A. Ariga, T. Ariga, S. Assylbekov, D. Autiero, M. Barbi, G. J. Barker, G. Barr, M. Bass, M. Batkiewicz, F. Bay, et al. (T2K Collab.), Phys. Rev. Lett. 112, 061802 (2014).

    Article  ADS  Google Scholar 

  16. N. Agafonova, A. Alexandrov, A. Anokhina, S. Aoki, A. Ariga, T. Ariga, A. Bertolin, C. Bozza, R. Brugnera, S. Buontempo, M. Chernyavskiy, A. Chukanov, L. Consiglio, N. D’Ambrosio, G. de Lellis, M. De Serio, et al. (OPERA Collab.), Phys. Rev. D 100, 051301(R) (2019).

  17. P. F. de Salas, D. V. Forero, C. A. Ternes, M. Tortola, and J. W. F. Valle, Phys. Lett. B 782, 633 (2018).

    Article  ADS  Google Scholar 

  18. I. Esteban, M. C. Gonzalez-Garcia, A. H. Cabezudo, M. Maltoni, and T. Schwetz, J. High Energy Phys. 1901, 106 (2019).

    Article  ADS  Google Scholar 

  19. M. A. Acero, P. Adamson, L. Aliaga, T. Alion, V. Allakhverdian, S. Altakarli, N. Anfimov, A. Antoshkin, A. Aurisano, A. Back, C. Backhouse, M. Baird, N. Balashov, P. Baldi, B. A. Bambah, S. Bashar, et al. (NOvA Collab.), Phys. Rev. Lett. 123, 151803 (2019).

    Article  ADS  Google Scholar 

  20. K. Abe, R. Akutsu, A. Ali, J. Amey, C. Andreopoulos, L. Anthony, M. Antonova, S. Aoki, A. Ariga, Y. Ashida, Y. Azuma, S. Ban, M. Barbi, G. J. Barker, G. Barr, C. Barry, et al. (T2K Collab.), Phys. Rev. Lett. 121, 171802 (2018).

    Article  ADS  Google Scholar 

  21. M. Aker, K. Altenmuller, M. Arenz, M. Babutzka, J. Barrett, S. Bauer, M. Beck, A. Beglarian, J. Behrens, T. Bergmann, U. Besserer, K. Blaum, F. Block, S. Bobien, K. Bokeloh, J. Bonn, et al. (KATRIN Collab.), Phys. Rev. Lett. 123, 221802 (2019).

    Article  ADS  Google Scholar 

  22. G. Drexlin, V. Hannen, S. Mertens, C. Weinheimer, et al., Adv. High Energy Phys. 2013, 293986 (2013).

    Article  Google Scholar 

  23. P. T. Springer, C. L. Bennett, and P. A. Baisden, Phys. Rev. A 35, 679 (1987).

    Article  ADS  Google Scholar 

  24. L. Gastaldo, K. Blaum, K. Chrysalidis, T. Day Goodacre, A. Domula, M. Door, H. Dorrer, Ch. E. Dullmann, K. Eberhardt, S. Eliseev, C. Enss, A. Faessler, P. Filianin, A. Fleischmann, D. Fonnesu, L. Gamer, et al., Eur. Phys. J.: Spec. Top. 226, 1623 (2017).

    Google Scholar 

  25. M. Agostini, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, E. Bellotti, S. Belogurov, A. Bettini, L. Bezrukov, J. Biernat, T. Bode, D. Borowicz, V. Brudanin, R. Brugnera, A. Caldwell, et al. (GERDA Collab.), Phys. Rev. Lett. 120, 132503 (2018).

    Article  ADS  Google Scholar 

  26. A. Gando, Y. Gando, T. Hachiya, A. Hayashi, S. Hayashida, H. Ikeda, K. Inoue, K. Ishidoshiro, Y. Karino, M. Koga, S. Matsuda, T. Mitsui, K. Nakamura, S. Obara, T. Oura, H. Ozaki, et al. (KamLAND-Zen Collab.), Phys. Rev. Lett. 117, 082503 (2016);

    Article  ADS  Google Scholar 

  27. Phys. Rev. Lett. 117, 109903 (2016).

  28. K. Blaum, S. Eliseev, F. A. Danevich, V. I. Tretyak, S. Kovalenko, M. I. Krivoruchenko, Yu. N. Novikov, and J. Suhonen, Rev. Mod. Phys. 92, 045007 (2020).

    Article  ADS  Google Scholar 

  29. Y. Koshio, PoS Now 283, 001 (2017).

  30. M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, D. Altmann, T. Anderson, C. Arguelles, T. C. Arlen, J. Auffenberg, X. Bai, S. W. Barwick, V. Baum, R. Bay, J. J. Beatty, et al. (Ice Cube Collab.), Phys. Rev. D 91, 072004 (2015).

    Article  ADS  Google Scholar 

  31. M. A. Acero, A. A. Aguilar-Arevalo, and D. J. Polo-Toledoar, Adv. High Energy Phys. 2020, 8526034 (2020).

    Article  Google Scholar 

  32. H. de Kerret, T. Abrahao, H. Almazan, J. C. dos Anjos, S. Appel, J. C. Barriere, I. Bekman, T. J. C. Bezerra, L. Bezrukov, E. Blucher, T. Brugiere, C. Buck, J. Busenitz, A. Cabrera, M. Cerrada, E. Chauveau, et al. (Double Chooz Collab.), arXiv: 1901.09445 [hep-ex].

  33. Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 247 (1962).

    Google Scholar 

  34. B. W. Lee, S. Pakvasa, R. E. Shrock, and H. Sugawara, Phys. Rev. Lett. 38, 937 (1977);

    Article  ADS  Google Scholar 

  35. Phys. Rev. Lett. 38, 1230(E) (1977).

  36. C. Patrignani, K. Agashe, G. Aielli, C. Amsler, M. Antonelli, D. M. Asner, H. Baer, Sw. Banerjee, R. M. Barnett, T. Basaglia, C. W. Bauer, J. J. Beatty, V. I. Belousov, J. Beringer, S. Bethke, H. Bichsel, et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).

    ADS  Google Scholar 

  37. N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, S. Basak, R. Battye, K. Benabed, J. P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock, et al. (Plank Collab.), Astron. Astrophys. 641, A6 (2020).

    Google Scholar 

  38. R. Arnold, C. Augier, J. D. Baker, A. S. Barabash, A. Basharina-Freshville, S. Blondel, S. Blot, M. Bongrand, V. Brudanin, J. Bustro, A. J. Caffrey, S. Calvez, C. Cerna, J. P. Cesar, A. Chapon, E. Chauveau, et al. (NEMO-3 Collab.), Phys. Rev. D 92, 072011 (2015).

    Article  ADS  Google Scholar 

  39. C. Alduino, F. Alessandria, K. Alfonso, E. Andreotti, C. Arnaboldi, F. T. Avignone III, O. Azzolini, M. Balata, I. Bandac, T. I. Banks, G. Bari, M. Barucci, J. W. Beeman, F. Bellini, G. Benato, A. Bersani, et al. (CUORE Collab.), Phys. Rev. Lett. 120, 132501 (2018).

    Article  ADS  Google Scholar 

  40. J. Shirai, in Proceedings of 17th International Workshop on Neutrino Telescopes, Venezia, Italy, 2017, PoS (Neutel2017) 027 (2018).

  41. J. Martin-Albo, J. Munoz Vidal, P. Ferrario, M. Nebot-Guinot, J. J. Gomez-Cadenas, V. Alvarez, C. D. R. Azevedo, F. I. G. Borges, S. Carcel, S. Cebrian, A. Cervera, C. A. N. Conde, J. Diaz, M. Diesburg, R. Esteve, L. M. P. Fernandes, et al., J. High Energy Phys. 1605, 159 (2016).

    Article  ADS  Google Scholar 

  42. D. V. Poda, AIP Conf. Proc. 1894, 020017 (2017).

    Article  Google Scholar 

  43. M. I. Krivoruchenko and K. S. Tyrin, Eur. Phys. J. A 56, 16 (2020).

    Article  ADS  Google Scholar 

  44. J. T. Suhonen, Front. Phys. 5, 55 (2017).

    Article  Google Scholar 

  45. E. Armengaud, C. Augier, A. S. Barabash, F. Bellini, G. Benato, A. Benoit, M. Beretta, L. Berge, J. Billard, Yu. A. Borovlev, Ch. Bourgeois, V. B. Brudanin, P. Camus, L. Chardani, N. Casali, A. Cazes, et al. (CUPID-Mo Collab.), Phys. Rev. Lett. 126, 181802 (2021).

    Article  ADS  Google Scholar 

  46. N. Abgrall, A. Abramov, N. Abrosimov, I. Abt, M. Agostini, M. Agartioglu, A. Ajjaq, S. I. Alvis, F. T. Avignone III, X. Bai, M. Balata, I. Barabanov, A. S. Barabash, P. J. Barton, L. Baudis, L. Bezrukov, et al., AIP Conf. Proc. 1894, 02027 (2017).

    Google Scholar 

  47. F. Edzards, M. Willers, A. Alborini, L. Bombelli, D. Fink, M. P. Green, M. Laubenstein, S. Mertens, G. Othman, D. C. Radford, S. Schönert, and G. Zuzel, arXiv: 2005.10366 [physics.ins-det].

  48. J. B. Albert, G. Anton, I. J. Arnquist, I. Badhrees, P. Barbeau, D. Beck, V. Belov, F. Bourque, J. P. Brodsky, E. Brown, T. Brunner, A. Burenkov, G. F. Cao, L. Cao, W. R. Cen, C. Chambers, et al. (nEXO Collab.), Phys. Rev. C 97, 065503 (2018).

    Article  ADS  Google Scholar 

  49. O. Gileva, J. S. Choe, H. J. Kim, Y. D. Kim, M. H. Lee, H. K. Park, and K. A. Shin, J. Instrum. 15, C07032 (2020).

    Article  Google Scholar 

  50. M. A. Loualidi, arXiv: 2104.13734 [hep-ph].

  51. A. S. Barabash, Int. J. Mod. Phys. A 33, 1843001 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

One of the authors, Kaushlendra Chaturvedi, thanks Department of Science & Technology-Science & Engineering Research Board (DST-SERB), India for financial support vide file no. EMR/2016/006748. Further, KC is thankful to R. Chandra for providing useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushlendra Chaturvedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, P., Anand, V. & Chaturvedi, K. Oscillating Neutrino Mass States and Double Beta Decay. Phys. Atom. Nuclei 84, 1203–1213 (2021). https://doi.org/10.1134/S106377882113024X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377882113024X

Navigation