Skip to main content
Log in

QGSJET-III Model: Novel Features

  • Elementary Particles and Fields/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Physics content of the QGSJET-III model is discussed, paying a particular attention to the treatment of higher-twist corrections to hard parton scattering processes, corresponding to rescattering of produced \(s\)-channel partons. Consequences for the energy dependence of both interaction cross sections and particle production are analyzed. Further, the implementation of the pion exchange mechanism in the model is described, concentrating on its relevance to the data of the LHCf experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Here we define diffractive processes as those which produce large rapidity gaps in the secondary production patterns. Since the intercepts of secondary Regge trajectories are smaller than unity, \(\mathbb{RRP}\) processes do not produce such signatures and should be regarded as a special class of nondiffractive interactions.

REFERENCES

  1. R. Engel, D. Heck, and T. Pierog, Ann. Rev. Nucl. Part. Sci. 61, 467 (2011).

    Article  ADS  Google Scholar 

  2. S. Ostapchenko, EPJ Web Conf. 208, 11001 (2019).

  3. S. Ostapchenko and M. Bleicher, Universe 5, 106 (2019).

    Article  ADS  Google Scholar 

  4. A. B. Kaidalov and K. A. Ter-Martirosyan, Phys. Lett. B 117, 247 (1982).

    Article  ADS  Google Scholar 

  5. N. N. Kalmykov and S. S. Ostapchenko, Phys. At. Nucl. 56, 346 (1993).

    Google Scholar 

  6. N. N. Kalmykov, S. S. Ostapchenko, and A. I. Pavlov, Nucl. Phys. Proc. Suppl. B 52 (3), 17 (1997).

    Article  ADS  Google Scholar 

  7. V. N. Gribov, Sov. Phys. JETP 26, 414 (1968).

    ADS  Google Scholar 

  8. S. Ostapchenko, H. J. Drescher, F. M. Liu, T. Pierog, and K. Werner, J. Phys. G 28, 2597 (2002).

    Article  ADS  Google Scholar 

  9. V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).

    Google Scholar 

  10. G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977).

    Article  ADS  Google Scholar 

  11. Yu. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).

    ADS  Google Scholar 

  12. S. Ostapchenko, Phys. Rev. D 74, 014026 (2006).

    Article  ADS  Google Scholar 

  13. S. Ostapchenko, Phys. Rev. D 83, 014018 (2011).

    Article  ADS  Google Scholar 

  14. O. V. Kancheli, JETP Lett. 18, 274 (1973).

    ADS  Google Scholar 

  15. J. L. Cardy, Nucl. Phys. B 75, 413 (1974).

    Article  ADS  Google Scholar 

  16. S. Ostapchenko, Phys. Lett. B 636, 40 (2006).

    Article  ADS  Google Scholar 

  17. S. Ostapchenko, Phys. Rev. D 77, 034009 (2008).

    Article  ADS  Google Scholar 

  18. V. A. Abramovsky, V. N. Gribov, and O. V. Kancheli, Sov. J. Nucl. Phys. 18, 308 (1974).

    Google Scholar 

  19. J. C. Collins, D. E. Soper, and G. F. Sterman, Nucl. Phys. B 308, 833 (1988).

    Article  ADS  Google Scholar 

  20. J. C. Collins, D. E. Soper, and G. F. Sterman, Adv. Ser. Direct. High Energy Phys. 5, 1 (1989).

    Google Scholar 

  21. R. L. Jaffe and M. Soldate, Phys. Lett. B 105, 467 (1981).

    Article  ADS  Google Scholar 

  22. R. L. Jaffe and M. Soldate, Phys. Rev. D 26, 49 (1982).

    Article  ADS  Google Scholar 

  23. R. K. Ellis, W. Furmanski, and R. Petronzio, Nucl. Phys. B 207, 1 (1982).

    Article  ADS  Google Scholar 

  24. R. K. Ellis, W. Furmanski, and R. Petronzio, Nucl. Phys. B 212, 29 (1983).

    Article  ADS  Google Scholar 

  25. Jianwei Qiu, Phys. Rev. D 42, 30 (1990).

    Article  ADS  Google Scholar 

  26. Jianwei Qiu and I. Vitev, Phys. Rev. Lett. 93, 262301 (2004).

    Article  ADS  Google Scholar 

  27. Jian-Wei Qiu and I. Vitev, Phys. Lett. B 632, 507 (2006).

    Article  ADS  Google Scholar 

  28. Jianwei Qiu and I. Vitev, Phys. Lett. B 587, 52 (2004).

    Article  ADS  Google Scholar 

  29. Jianwei Qiu and G. Sterman, Nucl. Phys. B 353, 105 (1991).

    Article  ADS  Google Scholar 

  30. Jianwei Qiu and G. Sterman, Nucl. Phys. B 353, 137 (1991).

    Article  ADS  Google Scholar 

  31. R. Doria, J. Frenkel, and J. C. Taylor, Nucl. Phys. B 168, 93 (1980).

    Article  ADS  Google Scholar 

  32. R. Basu, A. J. Ramalho, and G. Sterman, Nucl. Phys. B 244, 221 (1984).

    Article  ADS  Google Scholar 

  33. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).

    Article  ADS  Google Scholar 

  34. G. Antchev et al. (TOTEM Collab.), Europhys. Lett. 101, 21004 (2013).

    ADS  Google Scholar 

  35. G. Antchev et al. (TOTEM Collab.), Phys. Rev. Lett. 111, 012001 (2013).

    Article  ADS  Google Scholar 

  36. G. Antchev et al. (TOTEM Collab.), Eur. Phys. J. C 79, 103 (2019).

    Article  ADS  Google Scholar 

  37. G. Aad et al. (ATLAS Collab.), Nucl. Phys. B 889, 486 (2014).

    Article  ADS  Google Scholar 

  38. M. Aaboud et al. (ATLAS Collab.), Phys. Lett. B 761, 158 (2016).

    Article  ADS  Google Scholar 

  39. G. Aad et al. (ATLAS Collab.), New J. Phys. 13, 053033 (2011).

    Article  ADS  Google Scholar 

  40. G. Aad et al. (ATLAS Collab.), Phys. Lett. B 758, 67 (2016).

    Article  ADS  Google Scholar 

  41. M. Aaboud, G. Aad, et al. (ATLAS Collab.), Eur. Phys. J. C 76, 502 (2016).

    Article  ADS  Google Scholar 

  42. A. B. Kaidalov, V. A. Khoze, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C 47, 385 (2006).

    Article  ADS  Google Scholar 

  43. V. A. Khoze, A. D. Martin, and M. G. Ryskin, Phys. Rev. D. 96, 034018 (2017).

    Article  ADS  Google Scholar 

  44. B. Z. Kopeliovich, I. K. Potashnikova, I. Schmidt, H. J. Pirner, and K. Reygers, Phys. Rev. D 91, 054030 (2015).

    Article  ADS  Google Scholar 

  45. S. Ostapchenko, EPJ Web Conf. 52, 02001 (2013).

  46. O. Adriani et al. (LHCf Collab.), J. High Energy Phys. 1811, 073 (2018).

  47. O. Adriani, E. Berti, L. Bonechi, M. Bongi, G. Gastellini, R. D’Alessandro, M. Del Prete, M. Haguenauer, Y. Yton, K. Kasahara, K. Kawade, Y. Makino, K. Masuda, E. Matsubayashi, H. Menjo, G. Mitsuka, et al., Phys. Lett. B 750, 360 (2015).

    Article  ADS  Google Scholar 

  48. V. A. Khoze, F. Krauss, A. D. Martin, M. G. Ryskin, and K. C. Zapp, Eur. Phys. J. C 69, 85 (2010).

    Article  ADS  Google Scholar 

  49. X.-N. Wang, Phys. Rep. 280, 287 (1997).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Deutsche Forschungsgemeinschaft (project no. 465275045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ostapchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostapchenko, S. QGSJET-III Model: Novel Features. Phys. Atom. Nuclei 84, 1017–1025 (2021). https://doi.org/10.1134/S1063778821130238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821130238

Navigation