Skip to main content
Log in

Atmospheric Effects of Electron and Muon Components of Cosmic Rays: Sensitivity Theory Approach and Data of Operational Satellite Monitoring

  • Elementary Particles and Fields/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The results of a complex approach to the study of sensitivity of spatial distributions of electron and muon components of extensive air showers (EAS), measured by scintillation detectors, to variations in the temperature profile of the atmosphere are presented. To describe the lateral dependence of the spatial distribution function (SDF) of electrons in electron–photon cascades (EPC) and the SDF of muons of EAS, the method of the adjoint equations and also the variational theory of sensitivity, developed by the authors, were used. Spatial distributions of electron and muon components of EAS, as well as the corresponding differential temperature coefficients, were simulated by Monte Carlo methods. To assess the effect of variations in the temperature profile of the atmosphere on the spatial distribution of particles satellite monitoring of main parameters of the system ‘‘atmosphere–underlying surface’’ was carried out at locations of Yakutsk complex EAS array and TAIGA observatory. As a result, coefficients of differential sensitivity of spatial distributions of electrons and muons to variations in the temperature profile of the atmosphere were obtained for the first time. Corrective function that relates the energy release in scintillation detectors of various thicknesses with the electrons’ density above the detector at various distances from the shower axis were established. Based on the obtained data, a method for correcting the EAS detectors’ readings in view of the temperature effect has been developed. It is shown that changes in SDFs of the EAS electromagnetic component due to variations in the atmospheric temperature profile in one annual cycle of operation can exceed 10\(\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. W. D. Apel et al. (KASKADE-Grande Collab.), Phys. Rev. D 87, 081101 (2013).

    Article  ADS  Google Scholar 

  2. S. Buitink, A. Corstanje, H. Falcke, J. R. Hörandel, T. Huege, A. Nelles, J. P. Rachen, L. Rossetto, P. Schellart, O. Scholten, S. Ter Veen, S. Thoudam, T. N. G. Trinh, J. Anderson, A. Asgekar, I. M. Avruch, et al., Nature (London, U.K.) 531, 70 (2016).

    Article  ADS  Google Scholar 

  3. A. Aab et al. (Pierre Auger Collab.), Phys. Lett. B 762, 288 (2016).

    Article  ADS  Google Scholar 

  4. M. Settimo and Pierre Auger Collab., J. Phys.: Conf. Ser. 718, 052037 (2016).

    Google Scholar 

  5. R. U. Abbasi, M. Abe, T. Abu-Zayyad, M. Allen, R. Anderson, R. Azuma, E. Barcikowski, J. W. Belz, D. R. Bergman, S. A. Blake, R. Cady, M. J. Chae, B. G. Cheon, J. Chiba, M. Chikawa, W. R. Cho, et al., Astropart. Phys. 64, 49 (2015).

    Article  ADS  Google Scholar 

  6. A. A. Lagutin, N. V. Volkov, A. G. Tyumentsev, and R. I. Raikin, EPJ Web Conf. 145, 06004 (2017).

  7. M. N. D’yakonov, T. A. Egorov, N. N. Efimov, A. A. Ivanov, V. A. Kolosov, A. A. Mikhailov, M. I. Pravdin, and I. E. Sleptsov, Ultrahigh-Energy Cosmic Rays (Nauka, Novosibirsk, 1991) [in Russian].

    Google Scholar 

  8. A. A. Ivanov (for the Yakutsk array group), EPJ Web Conf. 53, 04003 (2013).

  9. A. V. Glushkov, M. I. Pravdin, and A. V. Sabourov, Bull. Russ. Acad. Sci.: Phys. 83, 1005 (2019).

    Article  Google Scholar 

  10. N. Budnev, I. Astapov, P. Bezyazeekov, V. Boreyko, A. Borodin, M. Brückner, A. Chiavassa, A. Gafarov, V. Grebenyuk, O. Gress, T. Gress, A. Grinyuk, O. Grishin, A. Dyachok, O. Fedorov, A. Haungs, et al., J. Instrum. 12, C08018 (2017).

    Article  Google Scholar 

  11. L. Kuzmichev, I. Astapov, P. Bezyazeekov, A. Borodin, M. Brückner, N. Budnev, A. Chiavasa, O. Gress, T. Gress, O. Grishin, A. Dyachok, O. Fedorov, A. Gafarov, A. Garmash, V. Grebenyuk, A. Grinyuk, et al., EPJ Web Conf. 207, 03003 (2019).

  12. A. A. Lagutin and V. V. Uchaikin, Adjoint Method in the Theory of Transport of High-Energy Cosmic Rays (Altai Univ., Barnaul 2013) [in Russian].

    Google Scholar 

  13. A. V. Pljasheshnikov, A. A. Lagutin, and V. V. Uchaikin, in Proceedings of 16th International Cosmic Ray Conference ICRC, Kyoto, 1979, Vol. 7, p. 1.

  14. L. I. Dorman, Variations in the Intensity of Cosmic Rays (Ground-Based Observations, Research Methods, Theory) (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  15. G. V. Chernyaev, A. A. Lagutin, and V. V. Uchaikin, in Proceedings of 21th International Cosmic Ray Conference ICRC, Adelaide, 1990, Vol. 9, p. 279.

  16. D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw, Tech. Rep. (Forschungszentrum Karlsruhe, Karlsruhe, 1998).

    Google Scholar 

  17. A. A. Lagutin, R. I. Raikin, N. Inoue, and A. Misaki, J. Phys. G: Nucl. Part. Phys. 28, 1259 (2002).

    Article  ADS  Google Scholar 

  18. R. I. Raikin, A. A. Lagutin, and A. V. Yushkov, Nucl. Phys. B Proc. Suppl. 175–176, 559 (2008).

    Article  ADS  Google Scholar 

  19. A. A. Lagutin, R. I. Raikin, and T. L. Serebryakova, Bull. Russ. Acad. Sci.: Phys. 77, 623 (2013).

    Article  Google Scholar 

  20. A. A. Lagutin, A. I. Goncharov, V. V. Melent’eva, and R. I. Raikin, Izv. Altai. Univ. 57, 18 (2008).

    Google Scholar 

  21. H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind, IEEE Trans. Geosci. Remote Sens. 41, 253 (2003).

    Article  ADS  Google Scholar 

  22. C. L. Parkinson, IEEE Trans. Geosci. Remote Sens. 41(2), 173 (2003).

    Article  ADS  Google Scholar 

  23. A. A. Lagutin, E. Yu. Mordvin, N. V. Volkov, K. M. Makushev, and R. I. Raikin, Proc. SPIE 10833, 108338Q (2018).

    Google Scholar 

  24. A. A. Lagutin, N. V. Volkov, A. P. Zhukov, K. M. Makushev, A. A. Maslov, E. Yu. Mordvin, R. I. Raikin, T. L. Serebryakova, and V. V. Sinitsin, J. Phys.: Conf. Ser. 1181, 012068 (2019).

    Google Scholar 

Download references

Funding

The work was performed at the UNU ‘‘Astrophysical Complex of MSU-ISU’’ (agreement 13.UNU.21.0007). The work is supported by the Russian Foundation for Basic Research (grants nos. 19-52-44002, 19-32-60003), the Russian Science Foundation (grants nos. 19-72-20067, 19-72-00010), the Russian Federation Ministry of Science and High Education (projects FZZE-2020-0017, FZZE-2020-0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lagutin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagutin, A.A., Goncharov, A.I., Raikin, R.I. et al. Atmospheric Effects of Electron and Muon Components of Cosmic Rays: Sensitivity Theory Approach and Data of Operational Satellite Monitoring. Phys. Atom. Nuclei 84, 1150–1158 (2021). https://doi.org/10.1134/S1063778821130196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821130196

Navigation