Skip to main content
Log in

Measurement of Angular Coefficients in the Drell–Yan Process in the CMS Experiment at the LHC

  • INTERACTIONS OF PLASMA, PARTICLE BEAMS, AND RADIATION WITH MATTER
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A review is given of measurements of the first five polarization coefficients \({{A}_{0}}\)\({{A}_{4}}\) of angular distributions of muons resulting from the Z0 boson decay in proton–proton collisions at the center-of-mass energy of 8 TeV. The data collected by the CMS Collaboration in 2011–2012 (LHC Run 1) are used. The statistics corresponds to the integrated luminosity of 19.7 fb–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. A. Rubakov, Phys. Usp. 55, 949 (2012);

    Article  ADS  Google Scholar 

  2. A. V. Lanyov, Phys. At. Nucl. 78, 521 (2015);

    Article  Google Scholar 

  3. S. V. Shmatov, Phys. At. Nucl. 76, 1106 (2013);

    Article  Google Scholar 

  4. S. V. Shmatov, Phys. At. Nucl. 78, 508 (2015);

    Article  Google Scholar 

  5. S. V. Shmatov, Phys. At. Nucl. 79, 266 (2016);

    Article  Google Scholar 

  6. S. V. Shmatov, in Proceedings of the Joint RDMS-CMS Seminar on Physics at the LHC, 2016, Vol. 4, p. 13; M. V. Savina, Phys. At. Nucl. 78, 532 (2015).

    Article  Google Scholar 

  7. S. D. Drell and T.-M. Yan, Phys. Rev. Lett. 25, 316 (1970);

    Article  ADS  Google Scholar 

  8. V. A. Matveev, R. M. Muradyan, and A. N. Tavkhelidze, Preprint JINR, P2-4543 (Dubna, 1969).

    Google Scholar 

  9. CDF Collab., Phys. Rev. Lett. 87, 131802 (2011);

    Google Scholar 

  10. CDF Collab., Phys. Lett. B 692, 232 (2010);

    Article  ADS  Google Scholar 

  11. D0 Collab., Phys. Rev. Lett. 82, 4769 (1999).

    Article  ADS  Google Scholar 

  12. G. Aad et al. (ATLAS Collab.), Phys. Lett. B 725, 223 (2013);

    Article  ADS  Google Scholar 

  13. G. Aad et al. (ATLAS Collab.), J. High Energy Phys. 2014 (6), 112 (2014);

    Google Scholar 

  14. I. A. Golutvin and S. V. Shmatov, Phys. At. Nucl. 48, 604 (2017).

    Google Scholar 

  15. CMS Collab., J. High Energy Phys. 2019 (12), 61 (2019); V. Khachatryan et al., Eur. Phys. J. C 75, 147 (2018), S. Chatrchyan et al. (CMS Collab.), J. High Energy Phys. 2011 (10), 007 (2011).

  16. S. Chatrchyan et al. (CMS Collab.), J. Instrum. 3, S08004 (2008).

    Google Scholar 

  17. CMS Collab., Eur. Phys. J. 76, 325 (2016);

    Article  ADS  Google Scholar 

  18. CMS Collab., Phys. Lett. B 718, 752 (2013);

    Article  ADS  Google Scholar 

  19. CMS Collab., Phys. Rev. D 84, 112002 (2011).

    Article  ADS  Google Scholar 

  20. V. Khachatryan et al. (CMS Collab.), Phys. Lett. B 750, 154 (2015).

    Article  ADS  Google Scholar 

  21. J. C. Collins and D. E. Soper, Phys. Rev. D: Part. Fields 16, 2219 (1977).

    Article  ADS  Google Scholar 

  22. C. S. Lam and W.-K. Tung, Phys. Rev. D: Part. Fields 18, 2447 (1978).

    Article  ADS  Google Scholar 

  23. M. Guanziroli et al. (NA10 Collab.), Z. Phys. C 37, 545 (1988).

    Article  ADS  Google Scholar 

  24. J. S. Conway et al., Phys. Rev. D: Part. Fields 39, 92 (1989).

    Article  ADS  Google Scholar 

  25. T. Aaltonen et al., Phys. Rev. Lett. 106, 241801 (2011).

    Article  ADS  Google Scholar 

  26. J. Alwall et al., J. High Energy Phys., No. 07, 079 (2014).

  27. J. Pumplin et al., J. High Energy Phys., No. 07, 012 (2002).

  28. T. Sjostrand, S. Mrenna, and P. Skands, J. High Energy Phys., No. 05, 026 (2006).

  29. S. Frixione, P. Nason, and C. Oleari, J. High Energy Phys., No. 11, 070 (2007).

  30. H.-L. Lai et al., Phys. Rev. D: Part. Fields 82, 074024 (2010).

    Article  ADS  Google Scholar 

  31. R. Gavin, Y. Li, F. Petriello, and S. Quackenbush, Comput. Phys. Commun. 182, 2388 (2011).

    Article  ADS  Google Scholar 

  32. GEANT4 Collab., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

    Google Scholar 

  33. CMS Collab., Eur. Phys. J. C 78, 701 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-32-90212.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shalaev.

Additional information

Translated by M. Potapov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaev, V.V., Gorbunov, I.N. & Shmatov, S.V. Measurement of Angular Coefficients in the Drell–Yan Process in the CMS Experiment at the LHC. Phys. Atom. Nuclei 84, 2037–2040 (2021). https://doi.org/10.1134/S1063778821090313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821090313

Keywords:

Navigation