Abstract
The efficiency of employing a beam of intermediate-energy \({}^{3}\)He particles for the production of the radionuclide \({}^{230}\)Pa on natural-thorium targets, which is used to obtain a \({}^{230}\)U therapeutic \(\alpha\) emitter was estimated. The cross section for the reaction \({}^{232}{\textrm{Th}}(^{3}{\textrm{He}},p4n)^{230}\)Pa and the cross sections for the accompanying reactions \({}^{232}{\textrm{Th}}(^{3}{\textrm{He}},p2n)^{232}\)Pa and \({}^{232}{\textrm{Th}}(^{3}{\textrm{He}},2p+pn)^{233}\)Pa in the energy range from 39 to 58 MeV were measured. Experimental results were compared with theoretical data from TENDL-2019 library. The present experiment did not confirm a large cross-section values presented in TENDL-2019 library (up to 400 mb for the reaction \({}^{232}{\textrm{Th}}(^{3}{\textrm{He}},p4n)^{230}\)Pa). Therefore, this reaction can hardly be viewed as an alternative to proton- and deuteron-induced reactions for production of \({}^{230}\)Pa. The cross sections for the reactions \({}^{232}{\textrm{Th}}(^{3}{\textrm{He}},p2n)^{232}\)Pa and \({}^{232}{\textrm{Th}}(^{3}{\textrm{He}},2p+pn)^{233}\)Pa in TENDL-2019 also differ significantly from the experimental data.
This is a preview of subscription content, access via your institution.



REFERENCES
D. Cordier, F. Forrer, F. Bruchertseifer, A. Morgenstern, C. Apostolidis, S. Good, J. Müller-Brand, H. Mäcke, J. C. Reubi, and A. Merlo, Eur. J. Nucl. Med. Mol. Imag. 37, 1335 (2010).
M. R. Zalutsky, D. A. Reardon, G. Akabani, R. E. Coleman, A. H. Friedman, H. S. Friedman, R. E. McLendon, T. Z. Wong, and D. D. Bigner, J. Nucl. Med. 49, 30 (2008).
R. F. Meredith, J. Torgue, M. T. Azure, S. Shen, S. Saddekni, E. Banaga, R. Carlise, P. Bunch, D. Yoder, and R. Alvarez, Cancer Biother. Radiopharm. 29, 12 (2014).
A. K. H. Robertson, B. L. McNeil, H. Yang, D. Gendron, R. Perron, V. Radchenko, S. Zeisler, P. Causey, and P. Schaffer, Inorg. Chem. 59, 12156 (2020).
C. Parker, S. Nilsson, D. Heinrich, S. I. Helle, J. M. O’Sullivan, S. D. Fossá, A. Chodacki, P. Wiechno, J. Logue, M. Seke, A. Widmark, D. C. Johannessen, P. Hoskin, D. Bottomley, N. D. James, A. Solberg, et al., N. Engl. J. Med. 369, 213 (2013).
A. Morgenstern, C. Apostolidis, F. Bruchertseifer, R. Capote, T. Gouder, F. Simonelli, M. Sin, and K. Abbas, Appl. Radiat. Isot. 66, 1275 (2008).
V. Radchenko, J. W. Engle, J. J. Wilson, J. R. Maassen, M. F. Nortier, E. R. Birnbaum, K. D. John, and M. E. Fassbender, Radiochim. Acta 104, 291 (2016).
M. T. Friend, T. Mastren, T. G. Parker, C. E. Vermeulen, M. Brugh, E. R. Birnbaum, F. M. Nortier, and M. E. Fassbender, Appl. Radiat. Isot. 156, 108973 (2020).
G. F. Steyn, M. A. Motetshwane, F. Szelecsényi, and J. W. Brümmer, Appl. Radiat. Isot. 168, 109514 (2021).
A. Koning and D. Rochman, Nucl. Data Sheets 113, 2841 (2012).
J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).
E. Browne and J. K. Tuli, Nucl. Data Sheets 113, 2113 (2012).
E. Browne, Nucl. Data Sheets 107, 2579 (2006).
B. Singh, J. K. Tuli, and E. Browne, Nucl. Data Sheets 170, 499 (2020).
Funding
This work was supported by the National Research Center Kurchatov Institute, order no. 1918 of September 24, 2020.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflicts of interest.
Rights and permissions
About this article
Cite this article
German, M.N., Zagryadskiy, V.A., Kurochkin, A.V. et al. Measurement of Cross Sections for the Reactions \({}^{{232}}{\textrm{Th}}({{}^{3}}{\textrm{He}}{,p4n})^{{230}}\)Pa, \({}^{{232}}{\textrm{Th}}({{}^{3}}{\textrm{He}}{,p2n})^{{232}}\)Pa, and \({}^{{232}}{\textrm{Th}}({{}^{3}}{\textrm{He}}{,2p+pn})^{{233}}\)Pa Induced by the Irradiation of a ThO\({}_{2}\) Target with \({}^{3}\)He Nuclei. Phys. Atom. Nuclei 85, 12–16 (2022). https://doi.org/10.1134/S1063778821060053
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063778821060053