Skip to main content

Measurement of Cross Sections for the Reactions \({}^{{232}}{\textrm{Th}}({{}^{3}}{\textrm{He}}{,p4n})^{{230}}\)Pa, \({}^{{232}}{\textrm{Th}}({{}^{3}}{\textrm{He}}{,p2n})^{{232}}\)Pa, and \({}^{{232}}{\textrm{Th}}({{}^{3}}{\textrm{He}}{,2p+pn})^{{233}}\)Pa Induced by the Irradiation of a ThO\({}_{2}\) Target with \({}^{3}\)He Nuclei

Abstract

The efficiency of employing a beam of intermediate-energy \({}^{3}\)He particles for the production of the radionuclide \({}^{230}\)Pa on natural-thorium targets, which is used to obtain a \({}^{230}\)U therapeutic \(\alpha\) emitter was estimated. The cross section for the reaction \({}^{232}{\textrm{Th}}(^{3}{\textrm{He}},p4n)^{230}\)Pa and the cross sections for the accompanying reactions \({}^{232}{\textrm{Th}}(^{3}{\textrm{He}},p2n)^{232}\)Pa and \({}^{232}{\textrm{Th}}(^{3}{\textrm{He}},2p+pn)^{233}\)Pa in the energy range from 39 to 58 MeV were measured. Experimental results were compared with theoretical data from TENDL-2019 library. The present experiment did not confirm a large cross-section values presented in TENDL-2019 library (up to 400 mb for the reaction \({}^{232}{\textrm{Th}}(^{3}{\textrm{He}},p4n)^{230}\)Pa). Therefore, this reaction can hardly be viewed as an alternative to proton- and deuteron-induced reactions for production of \({}^{230}\)Pa. The cross sections for the reactions \({}^{232}{\textrm{Th}}(^{3}{\textrm{He}},p2n)^{232}\)Pa and \({}^{232}{\textrm{Th}}(^{3}{\textrm{He}},2p+pn)^{233}\)Pa in TENDL-2019 also differ significantly from the experimental data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. D. Cordier, F. Forrer, F. Bruchertseifer, A. Morgenstern, C. Apostolidis, S. Good, J. Müller-Brand, H. Mäcke, J. C. Reubi, and A. Merlo, Eur. J. Nucl. Med. Mol. Imag. 37, 1335 (2010).

    Article  Google Scholar 

  2. M. R. Zalutsky, D. A. Reardon, G. Akabani, R. E. Coleman, A. H. Friedman, H. S. Friedman, R. E. McLendon, T. Z. Wong, and D. D. Bigner, J. Nucl. Med. 49, 30 (2008).

    Article  Google Scholar 

  3. R. F. Meredith, J. Torgue, M. T. Azure, S. Shen, S. Saddekni, E. Banaga, R. Carlise, P. Bunch, D. Yoder, and R. Alvarez, Cancer Biother. Radiopharm. 29, 12 (2014).

    Article  Google Scholar 

  4. A. K. H. Robertson, B. L. McNeil, H. Yang, D. Gendron, R. Perron, V. Radchenko, S. Zeisler, P. Causey, and P. Schaffer, Inorg. Chem. 59, 12156 (2020).

    Article  Google Scholar 

  5. C. Parker, S. Nilsson, D. Heinrich, S. I. Helle, J. M. O’Sullivan, S. D. Fossá, A. Chodacki, P. Wiechno, J. Logue, M. Seke, A. Widmark, D. C. Johannessen, P. Hoskin, D. Bottomley, N. D. James, A. Solberg, et al., N. Engl. J. Med. 369, 213 (2013).

    Article  Google Scholar 

  6. A. Morgenstern, C. Apostolidis, F. Bruchertseifer, R. Capote, T. Gouder, F. Simonelli, M. Sin, and K. Abbas, Appl. Radiat. Isot. 66, 1275 (2008).

    Article  Google Scholar 

  7. V. Radchenko, J. W. Engle, J. J. Wilson, J. R. Maassen, M. F. Nortier, E. R. Birnbaum, K. D. John, and M. E. Fassbender, Radiochim. Acta 104, 291 (2016).

    Article  Google Scholar 

  8. M. T. Friend, T. Mastren, T. G. Parker, C. E. Vermeulen, M. Brugh, E. R. Birnbaum, F. M. Nortier, and M. E. Fassbender, Appl. Radiat. Isot. 156, 108973 (2020).

    Article  Google Scholar 

  9. G. F. Steyn, M. A. Motetshwane, F. Szelecsényi, and J. W. Brümmer, Appl. Radiat. Isot. 168, 109514 (2021).

    Article  Google Scholar 

  10. A. Koning and D. Rochman, Nucl. Data Sheets 113, 2841 (2012).

    Article  ADS  Google Scholar 

  11. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).

    Google Scholar 

  12. E. Browne and J. K. Tuli, Nucl. Data Sheets 113, 2113 (2012).

    Article  ADS  Google Scholar 

  13. E. Browne, Nucl. Data Sheets 107, 2579 (2006).

    Article  ADS  Google Scholar 

  14. B. Singh, J. K. Tuli, and E. Browne, Nucl. Data Sheets 170, 499 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Research Center Kurchatov Institute, order no. 1918 of September 24, 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Makoveeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

German, M.N., Zagryadskiy, V.A., Kurochkin, A.V. et al. Measurement of Cross Sections for the Reactions \({}^{{232}}{\textrm{Th}}({{}^{3}}{\textrm{He}}{,p4n})^{{230}}\)Pa, \({}^{{232}}{\textrm{Th}}({{}^{3}}{\textrm{He}}{,p2n})^{{232}}\)Pa, and \({}^{{232}}{\textrm{Th}}({{}^{3}}{\textrm{He}}{,2p+pn})^{{233}}\)Pa Induced by the Irradiation of a ThO\({}_{2}\) Target with \({}^{3}\)He Nuclei. Phys. Atom. Nuclei 85, 12–16 (2022). https://doi.org/10.1134/S1063778821060053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821060053