Skip to main content
Log in

Analysis of Transverse-Momentum Distributions of Charged Particles in Proton–Proton Collisions at Energies in the Range of \(\boldsymbol{(s_{nn})^{1/2}=2.76}\)–7 TeV at the LHC

  • Elementary Particles and Fields/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Experimental transverse-momentum distributions measured by the ALICE Collaboration for charged pions and kaons, protons, and antiprotons at midrapidities in inelastic proton–proton (\(p+p\)) collisions at energies in the range of \((s)^{1/2}=2.76\)–7 TeV in experiments at the Large Hadron Collider (LHC, CERN) are systematically analyzed by employing the thermodynamically consistent Tsallis distribution function and the Hagedorn formula with an embedded collective transverse flow. As approximate equality of the nonextensivity parameter \(q\) of the Tsallis function for pions and kaons, \(q\)(pions) \(\approx q\)(kaons), and the relationship \(q\)(mesons)\(>q\)(baryons) are obtained from a fit to the transverse-momentum spectra of particle species under analysis on the basis of the thermodynamically consistent Tsallis function in optimum identical fitting ranges of \(p_{t}\) in \(p+p\) collisions at \((s)^{1/2}=2.76\), 5.02, and 7 TeV. The parameter \(q\) increases systematically for all particle species as the \(p+p\) collision energy \((s)^{1/2}\) grows from 2.76 to 5.02 TeV but remains virtually unchanged within the fitting errors over the collision-energy range of \((s)^{1/2}=5\)–7 TeV, this being indicative of the saturation of \(q\) in \(p+p\) collisions at energies in the region of \((s)^{1/2}>5\) TeV. A nearly negligible radial flow velocity, which is compatible with zero value within the fitting errors, is obtained for \(p+p\) collisions in the energy range of \((s)^{1/2}=2.76\)–7 TeV upon approximating the \(p_{t}\) distributions of charged pions and kaons, protons, and antiprotons by the Hagedorn formula with an embedded transverse flow in the chosen optimum identical intervals of \(p_{t}\), as well as in the full measured ranges of \(p_{t}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  ADS  Google Scholar 

  2. C. Tsallis, Eur. Phys. J. A 40, 257 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Cleymans and D. Worku, J. Phys. G 39, 025006 (2012).

    Article  ADS  Google Scholar 

  4. I. Sena and A. Deppman, Eur. Phys. J. A 49, 17 (2013).

    Article  ADS  Google Scholar 

  5. PHENIX Collab. (A. Adare et al.), Phys. Rev. D 83, 052004 (2011).

    Article  ADS  Google Scholar 

  6. P. K. Khandai, P. Sett, P. Shukla, and V. Singh, Int. J. Mod. Phys. A 28, 1350066 (2013).

    Article  ADS  Google Scholar 

  7. C.-Y. Wong and G. Wilk, Acta Phys. Polon. B 43, 2047 (2012).

    Article  Google Scholar 

  8. J. Cleymans, G. I. Lyrasov, A. S. Parvan, A. S. Sorin, O. V. Teryaev, and D. Worku, Phys. Lett. B 723, 351 (2013).

    Article  ADS  Google Scholar 

  9. J. Cleymans, J. Phys.: Conf. Ser. 779, 012079 (2017).

    Google Scholar 

  10. H. Zheng and L. Zhu, Adv. High Energy Phys. 2016, 9632126 (2016).

    Article  Google Scholar 

  11. P. K. Khandai, P. Sett, P. Shukla, and V. Singh, J. Phys. G 41, 025105 (2014).

    Article  ADS  Google Scholar 

  12. C. Tsallis, R. S. Mendes, and A. R. Plastino, Phys. A (Amsterdam, Neth.) 261, 534 (1998).

  13. T. S. Biro, G. Purcsel, and K. Urmossy, Eur. Phys. J. A 40, 325 (2009).

    Article  ADS  Google Scholar 

  14. G. Biró, G. G. Barnaföldi, T. S. Biró, K. Ürmössy, and A. Takács, Entropy 19, 88 (2017).

    Article  ADS  Google Scholar 

  15. K. Shen, G. G. Barnaföldi, and T. S. Biró, Universe 5, 122 (2019).

    Article  ADS  Google Scholar 

  16. S. Grigoryan, Phys. Rev. D 95, 056021 (2017).

    Article  ADS  Google Scholar 

  17. G. Biro, G. G. Barnaföldi, T. S. Biró, and K. Shen, EPJ Web Conf. 171, 14008 (2018).

  18. E. Schnedermann, J. Sollfrank, and U. Heinz, Phys. Rev. C 48, 2462 (1993).

    Article  ADS  Google Scholar 

  19. STAR Collab. (B. I. Abelev et al.), Phys. Rev. C 79, 034909 (2009).

    Article  ADS  Google Scholar 

  20. STAR Collab. (B. I. Abelev et al.), Phys. Rev. C 81, 024911 (2010).

    Article  ADS  Google Scholar 

  21. Z. Tang, Y. Xu, L. Ruan, G. van Buren, F. Wang, and Z. Xu, Phys. Rev. C 79, 051901(R) (2009).

  22. Hai-Ling Lao, Fu-Hu Liu, and R. A. Lacey, Eur. Phys. J. A 53, 44 (2017).

    Article  ADS  Google Scholar 

  23. T. Bhattacharyya, J. Cleymans, A. Khuntia, P. Pareek, and R. Sahoo, Eur. Phys. J. A 52, 30 (2016).

    Article  ADS  Google Scholar 

  24. D. Thakur, S. Tripathy, P. Garg, R. Sahoo, and J. Cleymans, Adv. High Energy Phys. 2016, 4149352 (2016).

    Article  Google Scholar 

  25. Kh. K. Olimov, Sh. Z. Kanokova, K. Olimov, K. G. Gulamov, B. S. Yuldashev, S. L. Lutpullaev, and F. Y. Umarov, Mod. Phys. Lett. A 35, 2050115 (2020).

    Article  ADS  Google Scholar 

  26. Kh. K. Olimov, Sh. Z. Kanokova, A. K. Olimov, K. I. Umarov, B. J. Tukhtaev, K. G. Gulamov, B. S. Yuldashev, S. L. Lutpullaev, N. Sh. Saidkhanov, K. Olimov, and T. Kh. Sadykov, Mod. Phys. Lett. A 35, 2050237 (2020).

    Article  ADS  Google Scholar 

  27. ALICE Collab. (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013); arXiv: 1303.0737 [hep-ex].

    Article  ADS  Google Scholar 

  28. ALICE Collab. (B. Abelev et al.), Phys. Lett. B 736, 196 (2014); arXiv: 1401.1250v4 [nucl-ex].

    Article  ADS  Google Scholar 

  29. ALICE Collab. (S. Acharya et al.), Preprint CERN-EP-2019-208 (2019); arXiv: 1910.07678v1 [nucl-ex].

  30. ALICE Collab. (J. Adam et al.), Preprint CERN-PH-EP-2015-068 (2015); arXiv: 1504.00024v2 [nucl-ex].

  31. R. Hagedorn, Riv. Nuovo Cim. 6N10, 1 (1983).

  32. G. Wilk and Z. Wlodarczyk, Eur. Phys. J. A 40, 299 (2009).

    Article  ADS  Google Scholar 

  33. G. Wilk and Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000).

    Article  ADS  Google Scholar 

  34. R. Blankenbecler, S. J. Brodsky, and J. Gunion, Phys. Rev. D 12, 3469 (1975).

    Article  ADS  Google Scholar 

  35. S. J. Brodsky, H. J. Pirner, and J. Raufeisen, Phys. Lett. B 637, 58 (2006).

    Article  ADS  Google Scholar 

  36. A. S. Parvan, O. V. Teryaev, and J. Cleymans, arXiv: 1607.01956v3 [nucl-th].

  37. K. Jiang, Y. Zhu, W. Liu, H. Chen, C. Li, L. Ruan, Z. Tang, and Z. Xu, Phys. Rev. C 91, 024910 (2015).

    Article  ADS  Google Scholar 

  38. Inam-ul Bashir, R. A. Parra, R. A. Bhat, and S. Uddin, Adv. High Energy Phys. 2019, 8219567 (2019).

    Google Scholar 

  39. P. Braun-Munzinger, J. Stachel, J. P. Wessels, and N. Xu, Phys. Lett. B 344, 43 (1995); nucl-th/9410026.

    Article  ADS  Google Scholar 

  40. CMS Collab. (S. Chatrchyan et al.), Eur. Phys. J. C 72, 2164 (2012).

    Article  ADS  Google Scholar 

  41. X. N. Wang and R. C. Hwa, Phys. Rev. D 39, 187 (1989).

    Article  ADS  Google Scholar 

  42. X. N. Wang and M. Gyulassy, Phys. Rev. D 45, 844 (1992).

    Article  ADS  Google Scholar 

  43. X. N. Wang and M. Gyulassy, Phys. Lett. B 282, 466 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kh. Bozorov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdiev, B.S., Bozorov, E.K., Olimov, K.K. et al. Analysis of Transverse-Momentum Distributions of Charged Particles in Proton–Proton Collisions at Energies in the Range of \(\boldsymbol{(s_{nn})^{1/2}=2.76}\)–7 TeV at the LHC. Phys. Atom. Nuclei 84, 874–888 (2021). https://doi.org/10.1134/S1063778821050033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821050033

Navigation