Skip to main content

Effects of Radiative Corrections in the Drell–Yan Process at Ultrahigh Dilepton Invariant Masses

Abstract

One-loop electroweak and QCD radiative corrections in the Drell–Yan process at ultrahigh energies and dilepton invariant masses are calculated. The refactoring of the READY code is performed, and the integration procedure and the implementation of kinematical conditions and constraints are optimized. A detailed numerical analysis of the impact of radiative corrections to observed cross sections and forward–backward asymmetries is performed for the first time by means of the READY code for the CMS experiment in the Run3/HL mode of the Large Hadron Collider.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

REFERENCES

  1. 1a

    S. D. Drell and T. M. Yan, SLAC-PUB-0755 (1970);

  2. 1b

    Phys. Rev. Lett. 25, 316 (1970);

  3. 1c

    Phys. Rev. Lett. 25, 902(E) (1970).

  4. 2

    S. D. Drell and T. M. Yan, Ann. Phys. (N. Y.) 66, 578 (1971).

    ADS  Article  Google Scholar 

  5. 3

    V. A. Matveev, R. M. Muradyan, and A. N. Tavkhelidze, Preprint No. R2-4543 (JINR, Dubna, 1969).

  6. 4

    J. H. Christenson, G. S. Hicks, L. M. Lederman, P. J. Limon, B. G. Pope, and E. Zavattini, Phys. Rev. D 8, 2016 (1972).

    ADS  Article  Google Scholar 

  7. 5

    V. A. Zykunov, Phys. At. Nucl. 82, 183 (2019).

    Article  Google Scholar 

  8. 6

    U. Baur, O. Brein, W. Hollik, C. Schappacher, and D. Wackeroth, Phys. Rev. D 65, 033007 (2002); hep-ph/0108274.

    ADS  Article  Google Scholar 

  9. 7

    J. C. Collins and D. E. Soper, Phys. Rev. D 16, 2219 (1977).

    ADS  Article  Google Scholar 

  10. 8a

    CMS Collab. (S. Chatrchyan et al.), Phys. Lett. B 718, 752 (2013);

    ADS  Article  Google Scholar 

  11. 8b

    CMS-EWK-11-004, CERN-PH-EP-2012-187; arXiv:1207.3973.

  12. 9

    J. Gao, M. Guzzi, J. Huston, H.-L. Lai, Zh. Li, P. Nadolsky, J. Pumplin, D. Stump, and C.-P. Yuan, Phys. Rev. D 89, 033009 (2014); arXiv: 1302.6246 [hep-ph].

    ADS  Article  Google Scholar 

  13. 10

    L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne, Eur. Phys. J. C 75, 204 (2015); arXiv: 1412.3989 [hep-ph].

    ADS  Article  Google Scholar 

  14. 11

    M. Böhm, H. Spiesberger, and W. Hollik, Fortschr. Phys. 34, 687 (1986).

    Google Scholar 

  15. 12

    A. G. Aleksejevs, S. G. Barkanova, Yu. M. Bystritskiy, and V. A. Zykunov, Phys. At. Nucl. 83, 307 (2020).

    Article  Google Scholar 

  16. 13

    A. G. Aleksejevs, S. G. Barkanova, Yu. M. Bystritskiy, and V. A. Zykunov, Phys. At. Nucl. 83, 463 (2020).

    Article  Google Scholar 

  17. 14

    V. A. Zykunov, Phys. Rev. D 75, 073019 (2007); hep-ph/0509315.

    ADS  Article  Google Scholar 

  18. 15

    A. Andonov, A. Arbuzov, D. Bardin, S. Bondarenko, P. Christova, L. Kalinovskaya, G. Nanava, and W. von Schlippe, Comput. Phys. Commun. 174, 481 (2006); hep-ph/0411186.

    ADS  Article  Google Scholar 

  19. 16

    W. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta, Phys. Rev. D 18, 3998 (1978).

    ADS  Article  Google Scholar 

  20. 17

    V. A. Zykunov, Phys. At. Nucl. 73, 1229 (2010).

    Article  Google Scholar 

  21. 18

    V. A. Zykunov, Phys. At. Nucl. 74, 72 (2011).

    Article  Google Scholar 

  22. 19

    CMS Collab. (G. L. Bayatian et al.), J. Phys. G 34, 995 (2007).

    ADS  Article  Google Scholar 

  23. 20

    Particle Data Group (P. A. Zyla et al.), Prog. Theor. Exp. Phys. 083C01, 1 (2020).

  24. 21

    CMS Collab. (S. Chatrchyan et al.), J. High Energy Phys. 1312, 030 (2013);

  25. 21

    CMS Collab. (S. Chatrchyan et al.), J. High Energy Phys. 1312, 030 (2013); CMS-SMP-13-003, CERN-PH-EP-2013-168; arXiv:1310.7291.

  26. 22

    P. G. Lepage, J. Comput. Phys. 27, 192 (1978).

    ADS  Article  Google Scholar 

  27. 23

    C. Buttar, J. D’Hondt, M. Kramer, G. Salam, M. Wobisch, N. E. Adam, V. Adler, A. Arbuzov, D. Bardin, U. Baur, A. A. Bhatti, S. Bondarenko, V. Buge, J. M. Butterworth, and M. Cacciari, in Proceedings of the Workshop on Physics at TeV Colliders, Les Houches, 2007, p. 121; arXiv: 0803.0678 [hep-ph].

  28. 24

    C. M. Carloni Calame, G. Montagna, O. Nicrosini, and A. Vicini, J. High Energy Phys. 0710, 109 (2007); arXiv: 0710.1722 [hep-ph].

    ADS  Article  Google Scholar 

  29. 25

    R. Gavin, Ye Li, F. Petriello, and S. Quackenbush, Comput. Phys. Commun. 182, 2388 (2011); arXiv: 1011.3540 [hep-ph].

    ADS  Article  Google Scholar 

  30. 26

    E. V. Dydyshka, V. L. Ermolchik, V. A. Zykunov, J. H. Suarez, and S. V. Shmatov, Phys. Part. Nucl. 49, 722 (2018).https://doi.org/10.1134/S1063779618040184

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to my colleagues from the RDMS CMS group for discussions and to the Master’s Degree Student M.P. Bugaevskaya for testing the READY code.

Funding

This work was supported by the ‘‘Convergence-2025’’ Research Program of Republic of Belarus (Microscopic World, Plasma, and Universe Subprogram). The numerical calculation of observables in the Run3/HL mode of the LHC was performed at the HybriLIT heterogeneous computing cluster of Laboratory of Information Technology at Joint Institute for Nuclear Research (JINR, Dubna).

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Zykunov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zykunov, V.A. Effects of Radiative Corrections in the Drell–Yan Process at Ultrahigh Dilepton Invariant Masses. Phys. Atom. Nuclei 84, 492–512 (2021). https://doi.org/10.1134/S1063778821040293

Download citation