Skip to main content

Microscopic Analysis of Elastic Scattering Angular Distributions for Five Different Density Distribution of 9Be Nucleus

Abstract

The elastic scattering angular distributions of the weakly bound \({}^{9}\)Be projectile by \({}^{27}\)Al, \({}^{64}\)Zn, \({}^{89}\)Y, \({}^{120}\)Sn, and \({}^{208}\)Pb target nuclei at various incident energies are analyzed within the framework of optical model-based double-folding model. The aim is to examine the sensitivity of the elastic scattering cross sections to different density distributions of the projectile nucleus. For this purpose, the real part of the optical potantial was obtained for five different projectile density distributions, namely Moszkowski, Gupta 1, Gupta 2, Schechter, and Ngô–Ngô density distributions. The imaginary part is taken as the Woods-Saxon potential. The theoretical results are in good agreement with the experimental data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. 1

    G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979). https://doi.org/10.1016/0370-1573(79)90081-4

    ADS  Article  Google Scholar 

  2. 2

    R. J. Woolliscroft, B. R. Fulton, R. L. Cowin, M. Dasgupta, D. J. Hinde, C. R. Morton, and A. C. Berriman, Phys. Rev. C 69, 044612 (2004). https:// link.aps.org/doi/10.1103/PhysRevC.69.044- 612

  3. 3

    M. Aygun and I. Boztosun, Few-Body Syst. 55, 203 (2014). https://doi.org/10.1007/s00601-014-0856-9

    ADS  Article  Google Scholar 

  4. 4

    M. Aygun, Commun. Theor. Phys. 66, 531 (2016). https://doi.org/10.1088/0253-6102/66/5/531

    ADS  Article  Google Scholar 

  5. 5

    M. Aygun, O. Kocadag, and Y. Sahin, Rev. Mex. Fis. 61, 414 (2015).

    Google Scholar 

  6. 6

    F. S. Olise, O. I. Oladunjoye, A. Ajala, S. D. Olorunfunmi, and H. B. Olaniyi, Nucl. Sci. Tech. 28, 147 (2017). https://doi.org/10.1007/s41365-017-0298-4

    Article  Google Scholar 

  7. 7

    Y. Chu, Z. Ren, Z. Wang, and T. Dong, Phys. Rev. C 82, 024320 (2010). https://doi.org/10.1103/PhysRevC.82.024320

    ADS  Article  Google Scholar 

  8. 8

    M. Aygun and Z. Aygun, Rev. Mex. Fis. 65, 404 (2019).

    Article  Google Scholar 

  9. 9

    L. F. Canto, P. R. S. Gomes, R. Donangelo, and M. S. Hussein, Phys. Rep. 424, 1 (2006).

    ADS  Article  Google Scholar 

  10. 10

    P. R. S. Gomes, I. Padron, E. Crema, O. A. Capurro, J. O. Fernández Niello, A. Arazi, G. V. Martí, J. Lubian, M. Trotta, A. J. Pacheco, J. E. Testoni, M. D. Rodríguez, M. E. Ortega, L. C. Chamon, R. M. Anjos, R. Veiga, M. Dasgupta, D. J. Hinde, and K. Hagino, Phys. Rev. C 73, 064606 (2006). https://doi.org/10.1103/PhysRevC.73.064606

  11. 11

    P. R. S. Gomes, T. J. P. Penna, E. F. Chagas, R. Liguori Neto, J. C. Acquadro, P. R. Pascholati, E. Crema, C. Tenreiro, N. Carlin Filho, and M. M. Coimbra, Nucl. Phys. A 534, 429 (1991).

    ADS  Article  Google Scholar 

  12. 12

    S. B. Moraes, P. R. S. Gomes, J. Lubian, J. J. S. Alves, R. M. Anjos, M. M. Sant’Anna, I. Padrón, C. Muri, R. Liguori Neto, and N. Added, Phys. Rev. C 61, 064608 (2000). https://doi.org/10.1103/PhysRevC.61.064608

    ADS  Article  Google Scholar 

  13. 13

    A. Arazi, J. Casal, M. Rodríguez-Gallardo, J. M. Arias, R. Lichtenthäler Filho, D. Abriola, O. A. Capurro, M. A. Cardona, P. F. F. Carnelli, E. de Barbará, J. Fernández Niello, J. M. Figueira, L. Fimiani, D. Hojman, G. V. Martí, D. Martínez Heimman, and A. J. Pacheco, Phys. Rev. C 97, 044609 (2018). https:// link.aps.org/doi/10.1103/PhysRevC.97.044- 609

  14. 14

    N. Yu, H. Q. Zhang, H. M. Jia, S. T. Zhang, M. Ruan, F. Yang, Z. D. Wu, X. X. Xu, and C. L. Bai, J. Phys. G, 37, 075108 (2010). https://doi.org/10.1088/0954-3899/37/7/075108

    ADS  Article  Google Scholar 

  15. 15

    G. Bertsch, J. Borysowicz, H. McManus, and W. G. Love, Nucl. Phys. A 284, 399 (1977). https://doi.org/10.1016/0375-9474(77)90392-X

    ADS  Article  Google Scholar 

  16. 16

    M. E. Brandan and G. R. Satchler, Phys. Rep. 285, 142 (1997). https://doi.org/10.1016/S0370-1573(96)00048-8

    ADS  Article  Google Scholar 

  17. 17

    S. Hossain, M. N. A. Abdullah, M. Z. Rahman, A. K. Basak, and F. B. Malik, Phys. Scr. 87, 015201 (2013). https://doi.org/10.1088/0031-8949/87/01/015201

    ADS  Article  Google Scholar 

  18. 18

    H. De Vries, C. W. De Jager, and C. De Vries, At. Data Nucl. Data Tables 36, 495 (1987). https://doi.org/10.1016/0092-640X(87)90013-1

    ADS  Article  Google Scholar 

  19. 19

    J. Cook, Commun. Comput. Phys. 25, 125 (1982). https://doi.org/10.1016/0010-4655(82)90029-7

    ADS  Article  Google Scholar 

  20. 20

    M. Rhoades-Brown, M. H. Macfarlane, and S. C. Pieper, Phys. Rev. C 21, 2417 (1980). https://doi.org/10.1103/PhysRevC.21.2417

    ADS  Article  Google Scholar 

  21. 21

    M. H. Macfarlane and S. C. Pieper, Argonne National Laboratory Report No. ANL-76-11 (1978) (unpublished).

  22. 22

    S. A. Moszkowski, Nucl. Phys. A 309, 273 (1978). https://doi.org/10.1016/0375-9474(78)90548-1

    ADS  Article  Google Scholar 

  23. 23

    R. K. Gupta, D. Singh, and W. Greiner, Phys. Rev. C 75, 024603 (2007). https://doi.org/10.1103/PhysRevC.75.024603

    ADS  Article  Google Scholar 

  24. 24

    R. K. Gupta, D. Singh, R. Kumar, and W. Greiner, J. Phys. G: Nucl. Part. Phys. 36, 075104 (2009). https://doi.org/10.1088/0954-3899/36/7/075104

    ADS  Article  Google Scholar 

  25. 25

    H. Schechter and L. F. Canto, Nucl. Phys. A 315, 470 (1979). https://doi.org/10.1016/0375-9474(79)90623-7

    ADS  Article  Google Scholar 

  26. 26

    H. Ngô and Ch. Ngô, Nucl. Phys. A 348, 140 (1980). https://doi.org/10.1016/0375-9474(80)90550-3

    ADS  Article  Google Scholar 

  27. 27

    C. Ngô, B. Tamain, M. Beiner, R. J. Lombard, D. Mas, and H. H. Deubler, Nucl. Phys. A 252, 237 (1975). https://doi.org/10.1016/0375-9474(75)90614-4

    ADS  Article  Google Scholar 

  28. 28

    C. S. Palshetkar, S. Santra, A. Chatterjee, K. Ramachandran, Shital Thakur, S. K. Pandit, K. Mahata, A. Shrivastava, V. V. Parkar, V. Nanal, B. J. Roy, V. Jha, and S. Kalias, EPJ Web Conf. 17, 03006 (2011). https://doi.org/10.1051/epjconf/20111703006

Download references

ACKNOWLEDGMENTS

Authors would like to thank the referee for the valuable and constructive comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. D. Olorunfunmi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Olorunfunmi, S.D., Bahini, A. Microscopic Analysis of Elastic Scattering Angular Distributions for Five Different Density Distribution of 9Be Nucleus. Phys. Atom. Nuclei 84, 448–459 (2021). https://doi.org/10.1134/S1063778821040244

Download citation