Skip to main content

Differential \(\boldsymbol{W}^{{+}}{/}\boldsymbol{W}^{{-}}\) Cross Section Ratios for \(\boldsymbol{W}\) Plus Jet Production in \(\boldsymbol{pp}\) Collisions Through (N)NLO in QCD

Abstract

This paper presents a phenomenological study of differential \(W^{+}/W^{-}\) cross section ratios for \(W\)-boson production in association with a jet through next-to-leading-order (NLO) and next-to-NLO (NNLO) calculations in perturbative QCD based on the \(q_{T}\)-subtraction approach. The \(W^{+}/W^{-}\) cross section ratios are calculated for proton–proton collisions at both 8 and 13 TeV energies. The differential distributions for the ratios are presented as functions of important variables that are sensitive to perturbative QCD corrections including the transverse momentum of the W boson, the transverse momentum of the leading jet, and the absolute rapidity of the leading jet. The predicted distributions at (N)NLO accuracy are compared with the 8 TeV data from the ATLAS experiment at the LHC. The differential distributions at 13 TeV are compared at (N)NLO using different parton distribution functions (PDFs) to assess sensitivity of calculations to different PDF models. The presented ratios are found to be under good control by the (N)NLO calculations for most of the phase space regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. 1

    CMS Collab. (V. Khachatryan et al.), Phys. Lett. B 741, 12 (2015).

    ADS  Article  Google Scholar 

  2. 2

    V. Khachatryan et al. (CMS Collab.), Phys. Rev. D 95, 052002 (2017).

    ADS  Article  Google Scholar 

  3. 3

    A. M. Sirunyan et al. (CMS Collab.), Phys. Rev. D 96, 072005 (2017).

    ADS  Article  Google Scholar 

  4. 4

    ATLAS Collab. (G. Aad et al.), Eur. Phys. J. C 75, 82 (2015).

    ADS  Article  Google Scholar 

  5. 5

    ATLAS Collab. (M. Aaboud et al.), Phys. Lett. B 765, 132 (2017).

    ADS  Article  Google Scholar 

  6. 6

    ATLAS Collab. (M. Aaboud et al.), JHEP 1805, 077 (2018).

  7. 7

    LHCb Collab. (R. Aaij et al.), JHEP 1605, 131 (2016).

    Google Scholar 

  8. 8

    V. Khachatryan et al. (CMS Collab.), Eur. Phys. J. C 76, 469 (2016).

    ADS  Article  Google Scholar 

  9. 9

    CMS Collab. (V. Khachatryan et al.), JHEP 1702, 096 (2017).

  10. 10

    ATLAS Collab. (G. Aad et al.), Eur. Phys. J. C 79, 760 (2019).

    ADS  Article  Google Scholar 

  11. 11

    LHCb Collab. (R. Aaij et al.), JHEP 1601, 155 (2016).

    Google Scholar 

  12. 12

    LHCb Collab. (R. Aaij et al.), JHEP 1610, 030 (2016).

  13. 13a

    J. H. Kühn, A. Kulesza, S. Pozzorini, and M. Schulze, Phys. Lett. B 651, 160 (2007);

    ADS  Article  Google Scholar 

  14. 13b

    W. Hollik, T. Kasprzik, and B. A. Kniehl, Nucl. Phys. B 790, 138 (2008);

    ADS  Article  Google Scholar 

  15. 13c

    J. H. Kühn, A. Kulesza, S. Pozzorini, and M. Schulze, Nucl. Phys. B 797, 27 (2008);

    ADS  Article  Google Scholar 

  16. 13d

    A. Denner, S. Dittmaier, T. Kasprzik, and A. Müch, JHEP 0908, 075 (2009).

  17. 14a

    S. Kallweit, J. M. Lindert, P. Maierhöfer, S. Pozzorini, and M. Schönherr, JHEP 1504, 012 (2015);

  18. 14b

    S. Kallweit, J. M. Lindert, P. Maierhöfer, S. Pozzorini, and M. Schönherr, JHEP 1604, 021 (2016).

  19. 15

    K. Hamilton, P. Nason, and G. Zanderighi, JHEP 1210, 155 (2012).

    ADS  Article  Google Scholar 

  20. 16

    R. Frederix and S. Frixione, JHEP 1212, 061 (2012).

  21. 17

    J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, JHEP 1407, 079 (2014).

  22. 18

    R. Boughezal, C. Focke, X. Liu, and F. Petriello, Phys. Rev. Lett. 115, 062002 (2015).

    ADS  Article  Google Scholar 

  23. 19

    R. Boughezal, X. Liu, and F. Petriello, Phys. Rev. D 94, 113009 (2016).

    ADS  Article  Google Scholar 

  24. 20

    J. M. Lindert, S. Pozzorini, R. Boughezal, J. M. Campbell, A. Denner, S. Dittmaier, A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, A. Huss, S. Kallweit, P. Maierhöfer, M. L. Mangano, T. A. Morgan, A. Mück, F. Petriello, et al., Eur. Phys. J. C 77, 829 (2017).

    ADS  Article  Google Scholar 

  25. 21

    A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss, and D. M. Walker, Phys. Rev. Lett. 120, 122001 (2018).

    ADS  Article  Google Scholar 

  26. 22

    J. Campbell and T. Neumann, JHEP 1912, 034 (2019).

  27. 23

    M. Grazzini, S. Kallweit, and M. Wiesemann, Eur. Phys. J. C 78, 537 (2018).

    ADS  Article  Google Scholar 

  28. 24

    S. Catani, L. Cieri, G. Ferrera, D. de Florian, and M. Grazzini, Phys. Rev. Lett. 103, 082001 (2009).

    ADS  Article  Google Scholar 

  29. 25

    S. Catani and M. Grazzini, Phys. Rev. Lett. 98, 222002 (2007).

    ADS  Article  Google Scholar 

  30. 26

    S. Catani, L. Cieri, D. de Florian, G. Ferrera, and M. Grazzini, Eur. Phys. J. C 72, 2195 (2012).

    ADS  Article  Google Scholar 

  31. 27

    D. A. Kosower, Phys. Rev. D 57, 5410 (1998).

    ADS  Article  Google Scholar 

  32. 28

    A. Gehrmann-De Ridder, T. Gehrmann, and E. W. N. Glover, JHEP 0509, 056 (2005).

  33. 29

    G. Somogyi, Z. Trócsányi, and V. Del Duca, JHEP 0506, 024 (2005).

  34. 30

    R. Boughezal, X. Liu, and F. Petriello, Phys. Rev. D 91, 094035 (2015).

    ADS  Article  Google Scholar 

  35. 31

    M. Cacciari, F. A. Dreyer, A. Karlberg, G. P. Salam, and G. Zanderighi, Phys. Rev. Lett. 115, 082002 (2015).

    ADS  Article  Google Scholar 

  36. 32

    J. C. Collins, D. E. Soper, and G. F. Sterman, Nucl. Phys. B 250, 199 (1985).

    ADS  Article  Google Scholar 

  37. 33

    G. Bozzi, S. Catani, D. de Florian, and M. Grazzini, Nucl. Phys. B 737, 73 (2006).

    ADS  Article  Google Scholar 

  38. 34

    T. Matsuura, S. C. van der Marck, and W. L. van Neerven, Nucl. Phys. B 319, 570 (1989).

    ADS  Article  Google Scholar 

  39. 35

    F. Cascioli, P. Maierhöfer, and S. Pozzorini, Phys. Rev. Lett. 108, 111601 (2012).

    ADS  Article  Google Scholar 

  40. 36

    A. Denner, S. Dittmaier, and L. Hofer, Comput. Phys. Commun. 212, 220 (2017).

    ADS  Article  Google Scholar 

  41. 37

    A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr, and G. Watt, Eur. Phys. J. C 75, 132 (2015).

    ADS  Article  Google Scholar 

  42. 38

    The NNPDF Collab. (R. D. Ball et al.), JHEP 1504, 040 (2015).

  43. 39

    S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, and C.-P. Yuan, Phys. Rev. D 93, 033006 (2016).

    ADS  Article  Google Scholar 

  44. 40

    L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne, Eur. Phys. J. C 75, 204 (2015).

    ADS  Article  Google Scholar 

  45. 41

    S. Alekhin, J. Blümlein, S. Moch, and R. Plačakytė, Phys. Rev. D 96, 014011 (2017).

    ADS  Article  Google Scholar 

  46. 42

    J. Butterworth, S. Carrazza, A. Cooper-Sarkar, A. De Roeck, J. Feltesse, S. Forte, J. Gao, S. Glazov, J. Huston, Z. Kassabov, R. McNulty, A. Morsch, P. Nadolsky, V. Radescu, J. Rojo, and R. Thorne, J. Phys. G 43, 023001 (2016).

    ADS  Article  Google Scholar 

  47. 43

    M. Cacciari, G. P. Salam, and G. Soyez, JHEP 0804, 063 (2008).

  48. 44

    ATLAS Collab. (G. Aad et al.), Phys. Lett. B 759, 601 (2016).

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Marius Wiesemann, one of the authors of the MATRIX, for providing valuable help to set up the computational framework.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Ocalan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ocalan, K. Differential \(\boldsymbol{W}^{{+}}{/}\boldsymbol{W}^{{-}}\) Cross Section Ratios for \(\boldsymbol{W}\) Plus Jet Production in \(\boldsymbol{pp}\) Collisions Through (N)NLO in QCD. Phys. Atom. Nuclei 84, 483–491 (2021). https://doi.org/10.1134/S1063778821040232

Download citation