Skip to main content

Effect of Intranuclear Cascades on the Composition and Energy of Fragments Originating from Si(\({p,x}\)) and Fe(\({p,x}\)) Nuclear Reactions

Abstract

Quantum-mechanical models and the Monte Carlo method are used to study the composition and energies of products of nuclear reactions induced by collisions of fast protons with silicon and iron nuclei. It is shown that, at proton energies in excess of 500 MeV, intranuclear cascades at the stage of compound-nucleus formation in a preequilibrium state lead to an increase in the number of secondary ions and to a decrease in their average energy. The respective calculations were performed by means of the TALYS, EMPIRE, GEANT4, and FLUKA code packages.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. 1

    A. G. Sitenko, Theory of Nuclear Reactions (Energoatomizdat, Moscow, 1983; World Scientific, Singapore, 1990).

  2. 2

    H. W. Bertini, Phys. Rev. 131, 1801 (1963).

    ADS  Article  Google Scholar 

  3. 3

    A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).

    ADS  Article  Google Scholar 

  4. 4

    V. S. Barashenkov and V. D. Toneev, Interaction of High-Energy Particles and Atomic Nuclei with Nuclei (Atomizdat, Moscow , 1972).

    Google Scholar 

  5. 5

    N. G. Chechenin, T. V. Chuvilskaya, A. A. Shirokova, and A. G. Kadmenskii, Phys. At. Nucl. 78, 890 (2015).

    Article  Google Scholar 

  6. 6

    T. V. Chuvilskaya and A. A. Shirokova, Phys. At. Nucl. 81, 231 (2018).

    Article  Google Scholar 

  7. 7

    M. Herman, EMPIRE-II Statistical Model Code for Nuclear Reaction Calculations, Version 2.18 Mondovi, User Manual (2002).

    Google Scholar 

  8. 8

    M. Herman, R. Capote, M. Sin, et al., EMPIRE-3.2 Malta—Modular System for Nuclear Reaction Calculations and Nuclear Data Evaluation, User Manual (2015). http://www-nds.iaea.org/empire.

  9. 9

    A. Koning, S. Hilaire, and S. Goriely, TALYS-1.9: A Nuclear Reaction Program, User Manual (2017); http://www.talys.eu.

  10. 10

    J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B. R. Beck, A. G. Bogdanov, D. Brandt, J. M. C. Brown, H. Burkhardt, Ph. Canal, et al., Nucl. Instrum. Methods Phys. Res. A 835, 186 (2016). https://doi.org/10.1016/j.nima.2016.06.125

    ADS  Article  Google Scholar 

  11. 11

    T. T. Böhlen, F. Cerutti, M. P. W. Chin, Fassò, A. Ferrari, P. G. Ortega, A. Mairani, P. R. Sala, G. Smirnov, and V. Vlachoudis, Nucl. Data Sheets 120, 211 (2014). https://doi.org/10.1016/j.nds.2009.10.004

    ADS  Article  Google Scholar 

  12. 12

    M. Blann, Phys. Rev. C 54, 1341 (1996).

    ADS  Article  Google Scholar 

  13. 13

    R. Capote, M. Herman, P. Obložinský, P. G. Young, S. Goriely, T. Belgya, A. V. Ignatyuk, A. J. Koning, S. Hilaire, V. A. Plujko, M. Avrigeanu, O. Bersillon, M. B. Chadwick, T. Fukahori, Zhigang Ge, Yinlu Han, S. Kailas, et al., Nucl. Data Sheets 110, 3107 (2009). https://doi.org/10.1016/j.nds.2009.10.004

    ADS  Article  Google Scholar 

  14. 14

    K. Niita, S. Chiba, T. Maruyama, T. Maruyama, H. Takada, T. Fukahori, Y. Nakahara, and A. Iwamoto, Phys. Rev. C 52, 2620 (1995).

    ADS  Article  Google Scholar 

  15. 15

    G. Folger, V. N. Ivanchenko, and J. P. Wellisch, Eur. Phys. J. A 21, 407 (2004).

    ADS  Article  Google Scholar 

  16. 16

    T. V. Chuvilskaya, A. A. Shirokova, A. G. Kadmenskii, and N. G. Chechenin, Phys. At. Nucl. 71, 1293 (2008).

    Article  Google Scholar 

  17. 17

    C. Villagrasa-Canton et al., Phys. Rev. C 75, 044603 (2007).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. V. Novikov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Novikov, N.V., Chechenin, N.G., Chuvilskaya, T.V. et al. Effect of Intranuclear Cascades on the Composition and Energy of Fragments Originating from Si(\({p,x}\)) and Fe(\({p,x}\)) Nuclear Reactions. Phys. Atom. Nuclei 84, 425–432 (2021). https://doi.org/10.1134/S1063778821040220

Download citation