Skip to main content

Charge Form Factor and Radii of \({}^{\mathbf{6}}\)Li

Abstract

In the present work, aimed to investigate the nuclear structure of \({}^{6}\)Li, the charge form factor and the charge radius of \({}^{6}\)Li have been calculated. Within the framework of Effective Field Theory (EFT) at low energy, the charge form factor and the root-mean-square charge radius of \({}^{6}\)Li calculated in the zero-momentum-transfer limit based on cluster structure of \({}^{6}\)Li. The results of this model for the root-mean-square charge radius of \({}^{6}\)Li at low energies are comparable with the available experimental data and those of other theoretical models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. 1

    C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye, C. Leclercq-Willain, A. Coc, S. Barhoumi, P. Aguer, C. Rolfs, R. Kunz, J. W. Hammer, A. Mayer, T. Paradellis, S. Kossionides, C. Chronidou, et al., Nucl. Phys. A 656, 3 (1999).

    ADS  Article  Google Scholar 

  2. 2

    M. Anders et al. (LUNA Collab.), Phys. Rev. Lett. 113, 042501 (2014).

    ADS  Article  Google Scholar 

  3. 3

    D. Trezzi, M. Anders, M. Aliotta, A. Bellini, D. Bemmerer, A. Boeltzig, C. Broggini, C. G. Bruno, A. Caciolli, F. Cavanna, P. Corvisiero, H. Costantini, T. Davinson, R. Depalo, Z. Elekes, M. Erhard, et al., Astropart. Phys. 89, 57 (2017).

    ADS  Article  Google Scholar 

  4. 4

    K. I. Tursunmakhatov, R. Yarmukhamedov, and S. B. Igamov, EPJ Web Conf. 227, 02016 (2020).

  5. 5

    S. C. Jain, Z. Phys. 222, 222 (1969).

    ADS  Article  Google Scholar 

  6. 6

    A. Eskandarian, D. R. Lehman, and W. C. Parke, Phys. Rev. C 38, 2341 (1988).

    ADS  Article  Google Scholar 

  7. 7

    S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, nucl-th/9802073v1 (1998).

  8. 8

    G. Z. Krumova, E. Tomasi-Gustafsson, and A. N. Antonov, Central Eur. J. Phys. 6, 491 (2008).

    ADS  Google Scholar 

  9. 9

    B. E. Grinyuk and I. V. Simenog, Ukr. J. Phys. 55, 369 (2010).

    Google Scholar 

  10. 10

    A. Y. Abokor, World Res. J. Appl. Phys. 2, 24 (2011).

    Google Scholar 

  11. 11

    I. Sick, J. Phys. Chem. Ref. Data 44, 031213 (2015).

    ADS  Article  Google Scholar 

  12. 12

    E. M. Tursunov, S. A. Turakulov, A. S. Kadyrov, and I. Bray, Phys. Rev. C 98, 055803 (2018).

    ADS  Article  Google Scholar 

  13. 13

    D. Baye and E. M. Tursunov, J. Phys. G 45, 085102 (2018).

    ADS  Article  Google Scholar 

  14. 14

    P. Navratil and S. Quaglioni, Phys. Rev. C 83, 044609 (2011).

    ADS  Article  Google Scholar 

  15. 15

    H.-W. Hammer, S. Knig, and U. van Kolck, arXiv: 1906.12122 v1[nucl.-th].

  16. 16

    H. Sadeghi, Phys. Rev. C 75, 044002 (2007).

    ADS  Article  Google Scholar 

  17. 17

    H. Sadeghi, Prog. Theor. Phys. 124, 1037 (2010).

    ADS  Article  Google Scholar 

  18. 18

    J. Vanasse, Phys. Rev. C 98, 034003 (2018).

    ADS  Article  Google Scholar 

  19. 19

    H. Sadeghi and S. Bayegan, Nucl. Phys. A 753, 291 (2005).

    ADS  Article  Google Scholar 

  20. 20

    H. Sadeghi and S. Bayegan, Few-Body Systems 47, 167 (2010).

    ADS  Article  Google Scholar 

  21. 21

    H. Sadeghi, S. Bayegan, and H. W. Grießhammer, Phys. Lett. B 643, 263 (2006).

    ADS  Article  Google Scholar 

  22. 22

    P. F. Bedaque and U. van Kolck, Ann. Rev. Nucl. Part. Sci. 52, 339 (2002).

    ADS  Article  Google Scholar 

  23. 23

    A. Thapaliya, C. Ji, and D. Phillips, EPJ Web Conf. 113, 08018 (2016).

  24. 24

    H. Sadeghi and H. Khalili, Astrophys. Space Sci. 352, 637 (2014).

    ADS  Article  Google Scholar 

  25. 25

    S. Nahidinezhad, H. Sadeghi, and H. Khalili, New Astron. 80, 101424 (2020).

    Article  Google Scholar 

  26. 26

    S. Nahidinezhad, H. Sadeghi, and H. Khalili, Astrophys. Space Sci. 365, 74 (2020).

    ADS  Article  Google Scholar 

  27. 27

    S. Nahidinezhad, H. Sadeghi, and M. Khoddam, New Astron. 82, 101461 (2021).

    Article  Google Scholar 

  28. 28

    S. Nahidinezhad and M. Khoddam, New Astron. 86, 101584 (2021).

    Article  Google Scholar 

  29. 29

    C. Ji, Ch. Elster, and D. R. Phillips, Phys. Rev. C 90, 044004 (2014).

    ADS  Article  Google Scholar 

  30. 30

    R. Higa, G. Rupak, and A. Vaghani, EPJ A 54, 89 (2018).

    ADS  Article  Google Scholar 

  31. 31

    E. Ryberg, C. Forssn, H.-W. Hammer, and L. Platter, Phys. Rev. C 89, 014325 (2014).

    ADS  Article  Google Scholar 

  32. 32

    J. Carlson, S. Gandolfi, F. Pederiva, Steven C. Pieper, R. Schiavilla, K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys. 87, 1067 (2015).

    ADS  Article  Google Scholar 

  33. 33

    R. Ent, H. P. Block, J. F. A. van Hienen, G. van der Steenhoven, J. F. J. van den Brand, J. W. A. den Herder, E. Jans, P. H. M. Keizer, L. Lapikás, E. N. M. Quint, P. K. A. de Witt Huberts, B. L. Berman, W. J. Briscoe, C. T. Christou, D. R. Lehman, B. E. Norum, and A. Saha, Phys. Rev. Lett. 57, 2367 (1986).

    ADS  Article  Google Scholar 

  34. 34

    L. R. Suelzle, M. R. Yearian, and Hall Crannell, Phys. Rev. C 162, 992 (1967).

    ADS  Article  Google Scholar 

  35. 35

    G. C. Li, I. Sick, R. R. Whitney, and M. R. Yearian, Nucl. Phys. A 162, 583 (1971).

    ADS  Article  Google Scholar 

  36. 36

    J. C. Bergstrom, U. Deutschmann, and R. Neuhausen, Nucl. Phys. A 327, 439 (1979).

    ADS  Article  Google Scholar 

  37. 37

    W. Nörtersháuser, T. Neff, R. Sánchez, and I. Sick, Phys. Rev. C 84, 024307 (2011).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Nahidinezhad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nahidinezhad, S., Sadeghi, H. Charge Form Factor and Radii of \({}^{\mathbf{6}}\)Li. Phys. Atom. Nuclei 84, 441–447 (2021). https://doi.org/10.1134/S1063778821040219

Download citation