Skip to main content

Search for Rare Decays of the Observed Higgs Boson and Additional Higgs Bosons with the ATLAS Detector

Abstract

Searches for rare decays of the Standard Model Higgs boson and additional Higgs bosons are performed by the ATLAS experiment at the LHC. They use the unprecedented amount of collision data collected during the LHC \(pp\) collision run at \(\sqrt{s}=13\) TeV in 2015–2018, corresponding to an integrated luminosity of \(139\text{ fb}^{-1}\) after the data quality requirements. For the search for the dimuon decay of the Standard Model Higgs boson, the observed (expected) significance is \(2.0\sigma\) (\(1.7\sigma\)), and the best-fit value of the signal strength parameter is \(\mu=1.2\pm 0.6\). For the search for the \(Z\gamma\) decay of the Standard Model Higgs boson, the observed (expected) significance is \(2.2\sigma\) (\(1.2\sigma\)), and the best-fit value of the signal strength parameter is \(\mu=2.0^{+1.0}_{-0.9}\). For the search for new resonances decaying into photon pairs, no significant excess is observed. The experimental sensitivity of these analyses to the signal processes is increased, due not only to the increase in the dataset but also to the improvement in the analysis techniques.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. 1

    ATLAS Collab. (G. Aad et al.), Phys. Lett. B 716, 1 (2012); arXiv: 1207.7214 [hep-ex].

    ADS  Article  Google Scholar 

  2. 2

    CMS Collab. (S. Chatrchyan et al.), Phys. Lett. B 716, 30 (2012); arXiv: 1207.7235 [hep-ex].

    ADS  Article  Google Scholar 

  3. 3

    ATLAS Collab. (G. Aad et al.), JINST 3, S08003 (2008).

  4. 4

    N. Vignaroli, Phys. Rev. D 80, 095023 (2009).

    ADS  Article  Google Scholar 

  5. 5

    A. Dery, A. Efrati, Y. Hochberg, and Y. Nir, JHEP 1305, 039 (2013).

  6. 6

    ATLAS Collab. (G. Aad et al.), Phys. Lett. B 812, 135980 (2021); arXiv: 2007.07830 [hep-ex].

  7. 7

    M. Aaboud et al. (ATLAS Collab.), Phys. Rev. Lett. 119, 051802 (2017).

    ADS  Article  Google Scholar 

  8. 8

    M. Carena, I. Low, and C. E. M. Wagner, JHEP 1208, 060 (2012).

  9. 9

    C.-W. Chiang and K. Yagyu, Phys. Rev. D 87, 033003 (2012).

    ADS  Article  Google Scholar 

  10. 10

    C.-S. Chen, C.-Q. Geng, D. Huang, and L.-H. Tsai, Phys. Rev. D 87, 075019 (2013).

    ADS  Article  Google Scholar 

  11. 11

    ATLAS Collab., Phys. Lett. B 809, 135754 (2020); arXiv: 2005.05382 [hep-ex].

  12. 12

    ATLAS Collab. (M. Aaboud et al.), JHEP 1710, 112 (2017).

    ADS  Google Scholar 

  13. 13

    ATLAS Collab., ATLAS-CONF-2020-037; http://cdsweb.cern.ch/record/2727744

  14. 14

    R. Schabinger and J. D. Wells, Phys. Rev. D 72, 093007 (2005).

    ADS  Article  Google Scholar 

  15. 15

    G. M. Pruna and T. Robens, Phys. Rev. D 88, 115012 (2013).

    ADS  Article  Google Scholar 

  16. 16

    T. Appelquist, A. Chodos, and P. G. O. Freund, Modern Kaluza–Klein Theories (Addison-Wesley, 1987).

    MATH  Google Scholar 

  17. 17

    L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18

    L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Y. Kano.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kano, Y., the ATLAS collaboration. Search for Rare Decays of the Observed Higgs Boson and Additional Higgs Bosons with the ATLAS Detector. Phys. Atom. Nuclei 84, 535–539 (2021). https://doi.org/10.1134/S1063778821040153

Download citation