Skip to main content

Features of Triaxial Superdeformed Bands in Odd Mass Nuclei Using the Cranked Nilsson–Strutinsky Model

Abstract

The axial asymmetry deformation parameter \(\gamma\), the gamma transition energies, rotational frequencies, kinematic and dynamic moments of inertia in triaxial superdeformed (TSD) odd \(Z\) \({}^{\mathrm{163,165}}\)Lu nuclei are calculated and analyzed using the cranked Nilsson–Strutinsky (CNS) model. The assigned spins and excitation energies of the TSD bands are determined by trial procedure. We considered that the valence proton occupies the strongly deformed 1/2 \(+\) [660] intruder orbital of the \(i_{13/2}\) level moving in triaxially SD potential and is coupled to a rotating core and the pairing correlations are neglected because they are of small importance in the spin range of interest. Around neutron numbers \(N\simeq 92\) and 94, there is a major shell gap which belongs to a family of superdeformed rotational bands (SDRB’s) with quadrupole deformation parameter \(\epsilon_{2}\simeq 0.4{-}0.5\), hexadecapole deformation parameter \(\epsilon_{4}\simeq 0.03\), and axial deformation \(\gamma=20^{\circ}\). The rigid rotor plot is performed to show the predicted energy levels with a rotational reference subtracted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. 1

    National Nuclear Data Center, Brookhafen National Laboratory. http//www.nndc.bnl.gov/chart/.

  2. 2

    A. Kardan et al., Phys. Rev. C 86, 014309 (2012).

    ADS  Article  Google Scholar 

  3. 3

    S. Tormanen et al., Phys. Lett. B 454, 8 (1999).

    ADS  Article  Google Scholar 

  4. 4

    S. Odegard et al., Phys. Rev. Lett. 86, 5866 (2001).

    ADS  Article  Google Scholar 

  5. 5

    D. R. Jensen et al., Eur. Phys. J. A 19, 173 (2004).

    ADS  Article  Google Scholar 

  6. 6

    P. Bringel et al., Phys. Rev. C 75, 044306 (2007); 73, 054314 (2006).

  7. 7

    G. B. Hagemann, Eur. Phys. J. A 20, 183 (2004).

    ADS  Article  Google Scholar 

  8. 8

    A. Hamamoto, Phys. Rev. C 65, 04405 (2002).

    Article  Google Scholar 

  9. 9

    M. Matsuzaki, Y. R. Shimizu and K. Matsuzaki, Phys. Rev. C 65, 041303 (R) (2002).

  10. 10

    D. L. Zhang et al., Commun. Theor. Phys. 53, 121 (2010).

    ADS  Article  Google Scholar 

  11. 11

    G. Schönwaßer et al., Phys. Lett. B 552, 9 (2003).

    ADS  Article  Google Scholar 

  12. 12

    H. Amro et al., Phys. Lett. B 553, 197 (2003).

    ADS  Article  Google Scholar 

  13. 13

    S. G. Nilsson, Kong. Dan Vid Selsk Mat. Fys. Medd. 29(16) (1955).

  14. 14

    S. G. Nilsson et al., Nucl. Phys. A 131, 1 (1969).

    ADS  Article  Google Scholar 

  15. 15

    S. G. Nilsson and I. Ragnarsson, Shapes and Shells in Nuclear Structure (Cambridge University Press 1995).

    Google Scholar 

  16. 16

    T. Bengtsson, Nucl. Phys. A 512, 124 (1990).

    ADS  Article  Google Scholar 

  17. 17

    C. Gustafson et al., Ark. Fys. 36, 613 (1967).

    Google Scholar 

  18. 18

    B. R. Mottelson and S. G. Nilsson, Kong. Dan Vid Selsk Mat. Fys Medd. 1(8) (1959).

  19. 19

    V. M. Strutinsky, Nucl. Phys. A 95, 420 (1967).

    ADS  Article  Google Scholar 

  20. 20

    V. M. Strutinsky, Nucl. Phys. A 122, 1 (1968).

    ADS  Article  Google Scholar 

  21. 21

    A. V. Afanasjev et al., Phys. Rep. 322, 1 (1999).

    ADS  Article  Google Scholar 

  22. 22

    B. G. Carlsson and I. Ragnarsson, Phys. Rev. C 74, 011302 (R) (2006).

  23. 23

    W. Schmitz et al., Nucl. Phys. A 539, 112 (1992).

    ADS  Article  Google Scholar 

  24. 24

    W. Schmitz et al., Phys. Lett. B 503, 230 (1993).

    ADS  Article  Google Scholar 

  25. 25

    H. Schnack et al., Nucl. Phys. A 594, 175 (1995).

    ADS  Article  Google Scholar 

  26. 26

    A. Bohr and B. R. Mottelson Nuclear Structure (Benjamin, New York, 1975), Vol. 2.

    MATH  Google Scholar 

  27. 27

    I. Ikeda and T. Shimano, Phys. Rev. Lett. 63, 139 (1989).

    ADS  Article  Google Scholar 

  28. 28

    L. Jizhi, High Energy Phys. Nucl Phys. 22, 351 (1998).

    Google Scholar 

  29. 29

    R. Bengtsson and S. Fraundorf, Nucl. Phys. A 314, 27 (1979).

    ADS  Article  Google Scholar 

  30. 30

    R. Bengtsson and S. Fraundorf, Nucl. Phys. A 327, 139 (1979)

    ADS  Article  Google Scholar 

  31. 31

    G. Hackmen et al., Phys. Rev. C 55, 148 (1997)

    ADS  Article  Google Scholar 

  32. 32

    I. S. Wu and Z. N. Zhou, Phys. Rev C 56, 1814 (1997).

    ADS  Article  Google Scholar 

  33. 33

    G. Anderson et al., Nucl. Phys. A 268, 205 (1976).

    ADS  Article  Google Scholar 

  34. 34

    K. Pomorski and J. Dudek, Phys. Rev. C 67, 044316 (2003).

    ADS  Article  Google Scholar 

  35. 35

    S. Flibotte et al., Phys. Rev. Lett. 71, 4299 (1993).

    ADS  Article  Google Scholar 

  36. 36

    I. Cederwall et al., Phys. Rev. Lett. 72, 3150 (1994).

    ADS  Article  Google Scholar 

  37. 37

    W. Revial, H. Q. Jin and L. L. Riedinger, Phys. Lett. B 37, 19 (1996).

    ADS  Article  Google Scholar 

  38. 38

    A. M. Khalaf, M. M. Sirag and K. E. Abdelmageed Chin J Phys. 54, 329 (2016).

    Article  Google Scholar 

  39. 39

    Hamamoto and B. Mottelson, Phys. Lett. B 333, 294 (1995).

    ADS  Article  Google Scholar 

  40. 40

    I. S. Haslip, Phys. Rev. Lett. 78, 3447 (1999).

    ADS  Article  Google Scholar 

  41. 41

    M. Khalaf, T. M. Awwad and M. F. Elgabry, Int. J. Phys. Appl. Sci. 3(4), 47 (2016).

    Google Scholar 

  42. 42

    M. Khalaf, A. A. Zaki and A. M. Ismail, Int. J. Adv. Res. Phys. Sci. 3(9), 21 (2016).

    Google Scholar 

  43. 43

    M. Khalaf et al., Nucl. Phys. A 991, 121610 (2019).

    Article  Google Scholar 

  44. 44

    M. P. Carpenter et al., Phys. Rev. C 51, 2400 (1995).

    ADS  Article  Google Scholar 

  45. 45

    S. Bounem et al., Phys. Rev. C 53, R9 (1996).

    ADS  Google Scholar 

  46. 46

    M. Hilbert et al., Phys. Rev. C 54 2253 (1996).

    ADS  Article  Google Scholar 

  47. 47

    A. M. Khalaf, M. D. Okasha and E. H Raghab Int. J. Theor. Appl Sci 8(2), 58 (2016).

    Google Scholar 

  48. 48

    M. Khalaf, M. Kotb and T. M Awwad, Int. J. Mod Phys. E 26, 175001 (2017).

    Article  Google Scholar 

  49. 49

    M. Khalaf, A. Abdelsalam and T. M. Awwad, Int. J. Phys. Appl Sci. 3(10), 19 (2016).

    Article  Google Scholar 

  50. 50

    M. Khalaf et al., Prog Phys. 3, 39 (2013).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Kotb.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghanim, H.A., Kotb, M., Okasha, M.D. et al. Features of Triaxial Superdeformed Bands in Odd Mass Nuclei Using the Cranked Nilsson–Strutinsky Model. Phys. Atom. Nuclei 84, 433–440 (2021). https://doi.org/10.1134/S106377882104013X

Download citation