Skip to main content

Physics and Performance of the Upgraded T2K’s Near Detector


Tokai-to-Kamioka (T2K) is a long-baseline neutrino oscillation experiment currently ongoing in Japan. T2K has been the first experiment to detect the appearance of electron neutrinos in a muon neutrino beam and is now heading towards a quantification of the CP violating phase in the leptonic sector. This study requires to measure precisely the appearance probabilities of both neutrino and antineutrinos. Understanding the systematic uncertainties is essential to achieve such a challenge, thus the collaboration has decided to upgrade T2K’s near detector: ND280. The upgrade consists in the addition of a highly segmented plastic scintillator target named super fine-grained detector (SFGD) surrounded with two horizontal TPCs (HA-TPC) equipped with resistive MicroMegas modules which aim at covering the tracking of particles having high angles with respect to the beam line. In addition, six time-of-flight (ToF) planes will surround the new sub-detectors. These upgrades are currently being constructed and will be installed by the end of 2022. Ultimately, the upgraded detector will enlarge the phase space by providing constraints with a new variety of variables such as transverse kinematic imbalance which are more sensitive to nuclear effects, and thus will allow to constrain T2K’s dominant systematics with unprecedented accuracy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1

    T2K Collab., Nature 580, 339 (2020).

  2. 2

    T2K Collab., CERN-SPSC-2019-001 (SPSC-TDR-006) (2019); arXiv: 1901.03750.

  3. 3

    A. Blondel, M. Bogomilov, S. Bordoni, F. Cadoux, D. Douqa, K. Dugas, T. Ekelof, Y. Favre, S. Fedotov, K. Fransson, R. Fujita, E. Gramstad, A. K. Ichikawa, S. Ilieva, K. Iwamoto, C. Jesús-Valls, et al., arXiv: 2008.08861.

  4. 4

    C. Jesús-Valls, JINST 15, C08016 (2020).

    Article  Google Scholar 

  5. 5

    K. Abe et al. (T2K Collab.), Phys. Rev. D 98, 032003 (2018).

    ADS  Article  Google Scholar 

  6. 6

    X.-G. Lu et al. (MINERvA Collab.), Phys. Rev. Lett. 121, 022504 (2018).

    ADS  Article  Google Scholar 

  7. 7

    M. Elkins et al. (MINERvA Collab.), Phys. Rev. D 100, 052002 (2019).

    ADS  Article  Google Scholar 

  8. 8

    T. Cai et al. (MINERvA Collab.), Phys. Rev. D 101, 092001 (2020).

    ADS  Article  Google Scholar 

  9. 9

    X.-G. Lu, D. Coplowe, R. Shah, G. Barr, D. Wark, and A. Weber, Phys. Rev. D 92, 051302(R) (2015).

  10. 10

    A. P. Furmanski and J. T. Sobczyk, Phys. Rev. C 95, 065501 (2017).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Adrien Blanchet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blanchet, A. Physics and Performance of the Upgraded T2K’s Near Detector. Phys. Atom. Nuclei 84, 519–523 (2021).

Download citation