Skip to main content

High-Energy Neutrino Astronomy and the Baikal-GVD Neutrino Telescope

Abstract

Neutrino astronomy offers a novel view of the non-thermal Universe and is complementary to other astronomical disciplines. The field has seen rapid progress in recent years, including the first detection of astrophysical neutrinos in the TeV–PeV energy range by IceCube and the first identified extragalactic neutrino source (TXS 0506+056). Further discoveries are aimed for with new cubic-kilometer telescopes in the Northern Hemisphere: Baikal-GVD, in Lake Baikal, and KM3NeT-ARCA, in the Mediterranean sea. The construction of Baikal-GVD proceeds as planned; the detector currently includes over 2000 optical modules arranged on 56 strings, providing an effective volume of 0.35 km\({}^{3}\). We review the scientific case for Baikal-GVD, the construction plan, and first results from the partially built array.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    We leave aside the beyond-standard-model scenarios such as, e.g., resonant neutrino self-interactions.

REFERENCES

  1. 1

    M. A. Markov, in Proceedings of the 1960 Annual International Conference on High Energy Physics at Rochester, Ed. by E. C. G. Sudarshan, J. H. Tinlot, and A. C. Melissinos (Univ. of Rochester, Rochester, 1960), p. 578.

  2. 2

    IceCube Collab. (M. G. Aartsen et al.), JINST 12, P03012 (2017).

  3. 3

    ANTARES Collab. (M. Ageron et al.), Nucl. Instrum. Methods A 656, 11 (2011).

    ADS  Article  Google Scholar 

  4. 4

    KM3NeT Collab. (S. Adrián-Martínez et al.), J. Phys. G 43, 084001 (2016).

  5. 5

    IceCube Collab. (M. G. Aartsen et al.), Science 342, 1242856 (2013).

    Article  Google Scholar 

  6. 6

    IceCube Collab. (M. G. Aartsen et al.), Phys. Rev. Lett. 125, 121104 (2020).

    ADS  Article  Google Scholar 

  7. 7

    ANTARES Collab. (A. Albert et al.), ApJL 853, L7 (2018).

    ADS  Article  Google Scholar 

  8. 8

    IceCube Collab., Science 361, 147 (2018).

    ADS  Article  Google Scholar 

  9. 9

    Baikal-GVD Collab. (A. D. Avrorin et al.), PoS(ICRC2019) 0878, arXiv: 1908.05458.

  10. 10

    Baikal-GVD Collab. (A. D. Avrorin et al.), PoS(ICRC2019) 1012, arXiv: 1908.05529.

  11. 11

    Baikal-GVD Collab. (A. D. Avrorin et al.), PoS(ICRC2019) 0873, arXiv: 1908.05430.

  12. 12

    Baikal-GVD Collab. (A. D. Avrorin et al.), PoS(ICRC2019) 1013, arXiv: 1908.05450.

Download references

Funding

This work is supported by the Ministry of Science and Higher Education of Russian Federation under the contract 075-15-2020-778 in the framework of the Large scientific projects program within the national project ‘‘Science’’ and under the contract FZZE-2020-0017. We acknowledge support from Russian Foundation for Basic Research grant nos. 20-02-00400 and 19-29-11029, as well as support by the JINR young scientist and specialist grant no. 20-202-09. We also acknowledge the technical support of JINR staff for the computing facilities (JINR cloud).

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. N. Zaborov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avrorin, A.D., Avrorin, A.V., Aynutdinov, V.M. et al. High-Energy Neutrino Astronomy and the Baikal-GVD Neutrino Telescope. Phys. Atom. Nuclei 84, 513–518 (2021). https://doi.org/10.1134/S1063778821040062

Download citation