Skip to main content
Log in

Study of Neutrino Oscillations in the NOvA Experiment

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

NOvA is a neutrino experiment deployed at Fermi National Accelerator Laboratory (FNAL, USA) and designed for studying oscillations—namely, the appearance of electron neutrinos and the survival of muon neutrinos. Two detectors, a near and a far one, are separated by a distance of 810 km and are positioned at an angle of 14 mrad with respect to the axis of a beam from the NuMI accelerator complex. This configuration provides an optimum relationship between the energy and distance for neutrino oscillations. The experiment is aimed at measuring the neutrino mass hierarchy, determining the phase of \(CP\) violation in the lepton sector, and refining value of the parameters \(\theta_{23}\) and \(\Delta m^{2}_{32}\), as well as at performing some other tasks. The results of the NOvA analysis performed jointly for a \(8.85\times 10^{20}\) proton-on-target (POT) neutrino beam and a \(12.33\times 10^{20}\) POT antineutrino beams are discussed. Also, further prospects of the experiment are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. NOvA Collab. (D. S. Ayres et al.), hep-ex/0503053.

  2. NOvA Collab. (P. Adamson et al.), Nucl. Instrum. Methods Phys. Res., Sect. A 806, 279 (2016); arXiv: 1507.06690 [physics.acc-ph]. https://doi.org/10.1016/j.nima.2015.08.063

  3. NOvA Collab. (M. A. Acero et al.), Phys. Rev. Lett. 123, 151803 (2019); arXiv: 1906.04907 [hep-ex]. https://doi.org/10.1103/PhysRevLett.123.151803

  4. R. L. Talaga, J. J. Grudzinski, S. Phan-Budd, A. Pla-Dalmau, J. E. Fagan, C. Grozis, and K. M. Kephart, Nucl. Instrum. Methods Phys. Res., Sect. A 861, 77 (2017); arXiv: 1601.00908 [physics.ins-det]. https://doi.org/10.1016/j.nima.2017.03.004

  5. S. Mufson, B. Baugh, C. Bower, T. E. Coan, J. Cooper, L. Corwin, J. A. Karty, P. Mason, M. D. Messier, A. Pla-Dalmau, and M. Proudfoot, Nucl. Instrum. Methods Phys. Res., Sect. A 799, 1 (2015); arXiv: 1504.04035 [physics.ins-det]. https://doi.org/10.1016/j.nima.2015.07.026

  6. A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. D. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, and P. Vahle, J. Instrum. 11, P09001 (2016); arXiv: 1604.01444 [hep-ex]. https://doi.org/10.1088/1748-0221/11/09/P09001

  7. NOvA Collab. (M. A. Acero et al.), Phys. Rev. D 98, 032012 (2018); arXiv: 1806.00096 [hep-ex]. https://doi.org/10.1103/PhysRevD.98.032012

  8. A. Aurisano, C. Backhouse, R. Hatcher, N. Mayer, J. Musser, R. Patterson, R. Schroeter, and A. Sousa, J. Phys.: Conf. Ser. 664, 072002 (2015). https://doi.org/10.1088/1742-6596/664/7/072002

    Article  Google Scholar 

  9. I. D. Kakorin, K. S. Kuzmin, and V. A. Naumov, Phys. Part. Nucl. Lett. 17, 265 (2020). http://theor.jinr.ru/NeutrinoOscillations/Papers/ PEPANL2020.pdf.

    Article  Google Scholar 

  10. J. Wolcott (for the NOvA Collab.), PoS (NuFACT2018) 098 (2018); arXiv:1812.05653 [hep-ex]. https://doi.org/10.22323/1.341.0098

  11. O. B. Samoylov, N. V. Anfimov, A. I. Antoshkin, and A. P. Sotnikov, in Proceedings of the 27th International Symposium Nuclear Electronics and Computing (NEC’2019), Budva, Becici, Montenegro, Sept. 30–Oct. 4, 2019. http://ceur-ws.org/Vol-2507/439-442-paper-81.pdf.

  12. S. Yu, arXiv: 1910.07035 [physics.ins-det].

  13. A. Sutton (on behalf of the NOvA Collab.), PoS (NuFACT2018) 058 (2018). https://doi.org/10.22323/1.341.0058

  14. F. Psihas, E. Niner, M. Groh, R. Murphy, A. Aurisano, A. Himmel, K. Lang, M. D. Messier, A. Radovic, and A. Sousa, Phys. Rev. D 100, 073005 (2019); arXiv: 1906.00713 [physics.ins-det]. https://doi.org/10.1103/PhysRevD.100.073005

  15. P. Baldi, J. Bian, L. Hertel, and L. Li, Phys. Rev. D 99, 012011 (2019); arXiv: 1811.04557 [physics.ins-det]. https://doi.org/10.1103/PhysRevD.99.012011

  16. DUNE Collab. (B. Abi et al.), arXiv: 2002.02967 [physics.insdet].

  17. V. Lebedev (PIP-II Collab.), The PIP-II Reference Design Report. https://doi.org/10.2172/1365571

  18. I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, and T. Schwetz, J. High Energy Phys. 1901, 106 (2019); arXiv: 1811.05487 [hep-ph]. https://doi.org/10.1007/JHEP01(2019)106

  19. T2K and NOvA Collaborations to Produce Joint Neutrino Oscillation Analysis (2018). https://t2k-experiment.org/2018/01/t2k-nova-announce/.

Download references

ACKNOWLEDGMENTS

We are grateful to A.G. Olshevsky, head of the NOvA project at Joint Institute for Nuclear Research (JINR, Dubna) for stimulating discussions.

Funding

This study was supported in part by Russian Science Foundation (project no. 18-12-00271) and Russian Foundation for Basic Research (project no. 19-32-90058).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. D. Kolupaeva or O. B. Samoylov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolupaeva, L.D., Samoylov, O.B. Study of Neutrino Oscillations in the NOvA Experiment. Phys. Atom. Nuclei 84, 63–67 (2021). https://doi.org/10.1134/S1063778821010117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821010117

Navigation