Skip to main content
Log in

Comprehensive Analysis of Nanostructure of Oxide Dispersion Strengthened Steels as Prospective Materials for Nuclear Reactors

  • PROMISING STRUCTURAL MATERIALS
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The enhanced mechanical properties of oxide dispersion-strengthened (ODS) steels are mainly due to the high density of homogeneously distributed oxide inclusions. It is well known that some alloying elements, such as Ti, V, and Al, play an important role in the formation of oxides/nanoclusters and influence the density and size of these inclusions. In this paper, a wide range of ODS steels containing different alloying elements were studied. The microstructural analysis was performed using transmission electron microscopy and atom probe tomography. Different types of inclusions were found in the steels: oxides of the Y–Ti–O or Y–Al–O types with sizes of ~2–15 nm, and nanoclusters (2–5 nm) enriched in Y, O, and Cr, as well as Ti, V, and Al, when these elements were present in the material. It was shown that oxides made the main contribution to the steel strengthening, while the cluster contribution was comparable with that of oxides only in Austenitic ODS and 14Cr ODS steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Y. Carlan, J.-L. Bechade, P. Dubuisson, J.-L. Seran, P. Billot, A. Bougault, T. Cozzika, S. Doriot, D. Hamon, J. Henry, M. Ratti, N. Lochet, D. Nunes, P. Olier, T. Leblond, and M. H. Mathon, J. Nucl. Mater. 386–388, 430 (2009).

    Article  Google Scholar 

  2. Y. H. Jeong, W. J. Kim, D. J. Kim, J. Jang, S. H. Kang, Y.-B. Chun, and T. K. Kim, Proc. Eng. 86, 1 (2014).

    Article  Google Scholar 

  3. R. Mateus, P. A. Carvalho, D. Nunes, L. C. Alves, N. Franco, J. B. Correia, and E. Alves, Fusion Eng. Des. 86, 2386 (2011).

    Article  Google Scholar 

  4. A. Kimura, H.-S. Cho, N. Toda, R. Kasada, K. Yutani, H. Kishimoto, N. Iwata, S. Ukai, and M. Fujiwara, J. Nucl. Sci. Technol. 44, 323 (2007).

    Article  Google Scholar 

  5. J. P. Wharry, M. J. Swenson, and K. H. Yano, J. Nucl. Mater. 486, 11 (2017).

    Article  ADS  Google Scholar 

  6. R. Coppola, M. Klimiankou, R. Lindau, R. P. May, and M. Valli, Phys. B (Amsterdam, Neth.) 350, 545 (2004).

  7. Y.-S. Han, X. Mao, J. Jang, and T.-K. Kim, Appl. Phys. A 119, 249 (2015).

    Article  ADS  Google Scholar 

  8. C. A. Williams, E. A. Marquis, A. Cerezo, and G. D. W. Smith, J. Nucl. Mater. 400, 37 (2010).

    Article  ADS  Google Scholar 

  9. A. A. Aleev, N. A. Iskandarov, M. Klimenkov, R. Lindau, A. Moslang, A. A. Nikitin, S. V. Rogozhkin, P. Vladimirov, and A. G. Zaluzhnyi, J. Nucl. Mater. 409, 65 (2011).

    Article  ADS  Google Scholar 

  10. S. V. Rogozhkin, A. A. Bogachev, D. I. Kirillov, A. A. Nikitin, N. N. Orlov, A. A. Aleev, A. G. Zaluzhnyi, and M. A. Kozodaev, Phys. Met. Metallogr. 115, 1259 (2014).

    Article  ADS  Google Scholar 

  11. B. v. d. Schaaf, A.-A. F. Tavassoli, C. Fazio, E. Rigal, E. Diegele, R. Lindau, and G. Marois, Fusion Eng. Des. 69, 197 (2003).

    Article  Google Scholar 

  12. R. Lindau, A. Moslang, M. Rieth, M. Klimiankou, E. Materna-Morris, A. Alamo, A.-A. F. Tavassoli, C. Cayron, A.-M. Lancha, P. Fernandez, N. Baluc, R. Schäublin, E. Diegele, G. Filacchioni, J. W. Rensman, B. v. d. Schaaf, E. Lucon, and W. Dietz, Fusion Eng. Des. 75–79, 989 (2005).

    Article  Google Scholar 

  13. S. Ukai and M. Fujiwara, J. Nucl. Mater. 307–311, 749 (2002).

    Article  ADS  Google Scholar 

  14. S. V. Rogozhkin, N. N. Orlov, A. A. Nikitin, A. A. Aleev, A. G. Zaluzhnyi, M. A. Kozodaev, R. Lindau, A. Moslang, and P. Vladimirov, Inorg. Mater. Appl. Res. 6, 151 (2015).

    Article  Google Scholar 

  15. T. Gräning, M. Rieth, J. Hoffmann, S. Seils, P. D. Edmondson, and A. Möslang, J. Nucl. Mater. 516, 335 (2019).

    Article  ADS  Google Scholar 

  16. T. Jaumier, S. Vincent, L. Vincent, and R. Desmorat, J. Nucl. Mater. 518, 274 (2019).

    Article  ADS  Google Scholar 

  17. S. Xu, Z. Zhou, H. Jia, and Z. Yao, Steel Res. Int. 90, 1800594 (2018).

    Article  Google Scholar 

  18. M. Klimenkov, R. Lindau, and A. Möslang, J. Nucl. Mater. 386, 553 (2009).

    Article  ADS  Google Scholar 

  19. D. Bhattacharyya, P. Dickerson, G. R. Odette, S. A. Maloy, A. Misra, and M. Nastsi, Philos. Mag. 92, 2089 (2012).

    Article  ADS  Google Scholar 

  20. L. Hsiung, M. Fluss, S. Tumey, J. Kuntz, B. El-Dasher, M. Wall, B. Choi, A. Kimura, F. Willaime, and Y. Serruys, J. Nucl. Mater. 409, 72 (2011).

    Article  ADS  Google Scholar 

  21. N. H. Oono, S. Ukai, S. Hayashi, S. Ohtsuka, T. Kaito, A. Kimura, T. Torimaru, and K. Sakamoto, J. Nucl. Mater. 493, 180 (2017).

    Article  ADS  Google Scholar 

  22. P. Song, A. Kimura, K. Yabuuchi, P. Dou, H. Watanabe, J. Gao, and Y.-J. Huang, J. Nucl. Mater. 529, 151953 (2020).

    Article  Google Scholar 

  23. S. V. Rogozhkin, A. A. Aleev, A. A. Luk’yanchuk, A. S. Shutov, O. A. Raznitsyn, and S. E. Kirillov, Instrum. Exp. Tech. 60, 428 (2017).

    Article  Google Scholar 

  24. O. A. Raznitsyn, A. A. Lukyanchuk, A. S. Shutov, S. V. Rogozhkin, and A. A. Aleev, J. Anal. Chem. 72, 1404 (2017).

    Article  Google Scholar 

  25. A. A. Aleev, S. V. Rogozhkin, A. A. Lukyanchuk, A. S. Shutov, O. A. Raznitsyn, A. A. Nikitin, N. A. Iskandarov, O. A. Korchuganova, and S. E. Kirillov, State Registration Certificate of Computer Program No. 2018661876 (2018). https://www1.fips.ru/ofpstorage/Doc/IZPM/RUNWC1/000/000/002/702/112/%D0%98%D0%97-02702112-00001/document.pdf.

  26. P. Bas, A. Bostel, B. Deconihout, and D. Blavette, Appl. Surf. Sci. 87, 298 (1995).

    Article  ADS  Google Scholar 

  27. M. K. Miller, Atom Probe Tomography: Analysis at the Atomic Level (Kluwer Academic, New York, 2000).

    Book  Google Scholar 

  28. A. Cerezo and L. Davin, Surf. Interface Anal. 39, 184 (2007).

    Article  Google Scholar 

  29. G. E. Lucas, J. Nucl. Mater. 206, 287 (1993).

    Article  ADS  Google Scholar 

  30. Y. Ijiri, N. Oono, S. Ukai, S. Ohtsuka, T. Kaito, and Y. Matsukawa, Nucl. Mater. Energy 9, 378 (2016).

    Article  Google Scholar 

  31. E. Gil, N. Ordás, C. García-Rosales, and I. Iturriza, Fusion Eng. Des. 98–99, 1973 (2015).

    Article  Google Scholar 

  32. M. J. Swenson, C. K. Dolph, and J. P. Wharry, J. Nucl. Mater. 479, 426 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. P. Vladimirov at the Karlsruhe Institute of Technology (Germany), Professor A. Kimura at the University of Kyoto (Japan) and Dr. T.K. Kim (Republic of Korea) at the Korea Atomic Energy Research Institute for providing ODS steel specimens.

Funding

This work was supported by the Russian Science Foundation, project no. 17-19-01696. The equipment of the KAMIKS Shared Access Center (http://kamiks.itep.ru/) at the Alikhanov Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute, was used for the APT analysis. The equipment of the NANOZOND Resource Center, National Research Center Kurchatov Institute (http://www.rc.nrcki.ru/pages/-main/nanozond/), was used for specimen preparation by the FIB methods and analysis by the TEM methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rogozhkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogozhkin, S.V., Khomich, A.A., Bogachev, A.A. et al. Comprehensive Analysis of Nanostructure of Oxide Dispersion Strengthened Steels as Prospective Materials for Nuclear Reactors. Phys. Atom. Nuclei 83, 1425–1433 (2020). https://doi.org/10.1134/S1063778820100191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820100191

Keywords:

Navigation