Skip to main content
Log in

The Nature of Anomalous Particles (Granules) in Rapidly Quenched PREP Powders—II. A Multiscale Study of PREP Powders and PM HIP Compacts of Ni-Based Superalloys and Stainless Steels

  • PROMISING STRUCTURAL MATERIALS
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The formation of anomalous particles (granules) with a significantly different content of microalloying interstitial elements of carbon and boron characterizes the heterogeneity of the composition of rapidly quenched particles of high temperature Ni-based superalloys and stainless steels powders manufactured by the plasma rotating electrode process (PREP) technique. A detailed multiscale experimental study of the microstructure of PREP powders and PM HIP compacts of Ni-based superalloys and stainless steels is carried out in order to reveal the features of the microstructure of anomalous granules in the as-received state and consolidated state. Direct nuclear methods of activation autoradiography on carbon, track autoradiography on boron, metallography, SEM, EDX, and OIM are used. A significant effect of carbon and boron on the dendritic segregation of carbide-forming and boride-forming alloying elements in anomalous granules is revealed. The features of the behavior of carbon and boron, which determine the formation of the microstructure of anomalous granules and their retention in PM HIP compacts, are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. A. A. Iljin, G. B. Stroganov, O. Kh. Fatkullin, A. V. Shulga, and V. N. Martinov, Structure and Properties of Rapidly Quenched Alloys (Altex, Moscow, 2008) [in Russian].

    Google Scholar 

  2. E. N. Kablov, Aviats. Mater. Tekhnol., No. 1, 3 (2015). https://doi.org/10.18577/2071-9140-2015-0-1-3-33

  3. K. N. Amato, S. M. Gaytan, L. E. Murr, E. Martinez, P. W. Shindo, J. Hernandez, S. Collins, and F. Medina, Acta Mater. 60, 22 (2012).

    Article  Google Scholar 

  4. A. V. Shulga, J. Nucl. Mater. 434, 133 (2013).

    Article  ADS  Google Scholar 

  5. A. V. Vostrikov and D. I. Sukhov, Tr. VIAM 44 (8), 17 (2016). https://doi.org/10.18577/2307-6046-2016-0-8-3-3

    Article  Google Scholar 

  6. A. V. Shulga, J. Alloys Compd. 436, 155 (2007).

    Article  Google Scholar 

  7. G. Chen, S. Y. Zhao, P. Tan, J. Wang, C. S. Xiang, and H. P. Tang, Powder Technol. 333, 38 (2018).

    Article  Google Scholar 

  8. A. V. Shulga, Phys. At. Nucl. 82, 1263 (2019).

    Article  Google Scholar 

  9. Y. S. Zhao, J. Zhang, Y. S. Luo, J. Li, and D. Z. Tang, Mater. Sci. Eng. A 672, 143 (2016).

    Article  Google Scholar 

  10. P. Kontis, H. A. Mohd Yusof, S. Pedrazzini, M. Danaie, K. L. Moore, P. A. J. Bagot, M. P. Moody, C. R. M. Grovenor, and R. C. Reed, Acta Mater. 103, 688 (2016).

    Article  ADS  Google Scholar 

  11. M. Divya, S. K. Albert, and V. Thomas Paul, Welding World 63, 1681 (2019).

    Article  Google Scholar 

  12. G. S. Choi, Young Ho Kim, S. S. Kang, and S. H. Rye, Mater. Sci. Forum 544–545, 331 (2007).

    Article  Google Scholar 

  13. S. Ma, J. Xing, H. Fu, Y. Gao, and J. Zhang, Acta Mater. 60, 831 (2012).

    Article  ADS  Google Scholar 

  14. P. J. Zhou, J. J. Yu, X. F. Sun, H. R. Guan, and Z. Q. Hu, Mater. Sci. Eng. A 491, 159 (2008).

    Article  Google Scholar 

  15. G. Zhao, L. Yu, G. Yang, W. Zhang, and W. Sun, J. Alloys Compd. 686, 194 (2016).

    Article  Google Scholar 

  16. Y. Chen, J. Zhang, B. Wang, and C. Yao, Vacuum 156, 302 (2018).

    Article  ADS  Google Scholar 

  17. T. Ju, X. Ding, Y. Zhang, X. Chen, W. Chen, B. Wang, and X. Yan, High Temp. Mater. Proc. 38, 498 (2019).

    Article  Google Scholar 

  18. E. N. Kablov, N. V. Petrushin, M. B. Bronfin, and A. A. Alekseev, Russ. Metall. (Metally) 2006, 406 (2006).

    Article  ADS  Google Scholar 

  19. A. V. Shulga, Phys. At. Nucl. 79, 1536 (2016); A. V. Shulga, Yad. Fiz. Inzhin. 7, 138 (2016).

    Article  Google Scholar 

  20. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Vol. 155 of Springer Ser. in Solid-State Sciences (Springer, Berlin, Heidelberg, 2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shulga.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Obrezanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shulga, A.V. The Nature of Anomalous Particles (Granules) in Rapidly Quenched PREP Powders—II. A Multiscale Study of PREP Powders and PM HIP Compacts of Ni-Based Superalloys and Stainless Steels. Phys. Atom. Nuclei 83, 1339–1348 (2020). https://doi.org/10.1134/S1063778820090264

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820090264

Keywords:

Navigation