Skip to main content
Log in

Specific Features of the Positron Acceleration Dynamics in Traveling-Wave Electron LINACs

  • CHARGED PARTICLE ACCELERATORS FOR NUCLEAR TECHNOLOGIES
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

For multisectional traveling wave linear electron accelerators, the acceleration of positrons from an electron-bombarded intersectional converter target is considered by comparison of the model with an experiment. For the accelerated positrons and their energy spectra, the dependence of maxima of these spectra on the initial phase shift of a microwave (which accelerates the positrons) and on the energy of accelerated positrons and the phase distributions of these positrons are obtained. The spectra of the initial positron energies are found, which are essential in obtaining the accelerated positron current at the maximum of their spectrum. To study giant resonances in atomic nuclei, the efficiencies of obtaining positrons with and without their acceleration at electron LINACs are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. I. A. Rachek et al., in Proceedings of the International Seminar EMIN-2012 (IYaI RAN, Moscow, 2013), p. 108.

  2. L. Z. Dzhilavyan, Bull. Russ. Acad. Sci.: Phys. 78, 445 (2014).

    Article  Google Scholar 

  3. L. Z. Dzhilavyan, A. M. Lapik, V. G. Nedorezov, and B. A. Tulupov, Phys. Part. Nucl. 48, 139 (2017).

    Article  Google Scholar 

  4. L. Z. Dzhilavyan and N. P. Kucher, Sov. J. Nucl. Phys. 30, 151 (1979).

    Google Scholar 

  5. S. S. Dietrich and B. L. Berman, At. Data Nucl. Data Tables 38, 199 (1988).

    Article  ADS  Google Scholar 

  6. V. V. Varlamov, et al., Report INDC(NDS)-394 (IAEA, Vienna, Austria, 1999).

    Google Scholar 

  7. J. Ballam et al., Nucl. Instrum. Methods Phys. Res. 73, 53 (1969).

    Article  ADS  Google Scholar 

  8. D. Blum et al., Nucl. Instrum. Methods Phys. Res. 115, 553 (1974).

    Article  ADS  Google Scholar 

  9. P. Argan et al., Nucl. Instrum. Methods Phys. Res. 228, 20 (1984).

    Article  ADS  Google Scholar 

  10. I. I. Miroshnichenko et al., JETP Lett. 29, 722 (1979).

    ADS  Google Scholar 

  11. M. J. Alguard et al., Phys. Rev. Lett. 42, 1148 (1979).

    Article  ADS  Google Scholar 

  12. K. V. Astrelina, M. F. Blinov, T. A. Vsevolozhskaya, N. S. Dikanskii, F. A. Emanov, R. M. Lapik, P. V. Logachev, P. V. Martyshkin, A. V. Petrenko, T. V. Rybitskaya, A. N. Skrinskii, S. V. Shiyankov, and T. A. Yaskina, J. Exp. Theor. Phys. 106, 77 (2008).

    Article  ADS  Google Scholar 

  13. www.inp.nsk.su/nauka/issledovatelskaya-infrastruktura/nauchnye-ustanovki/kompleks-vepp-4-vepp-2000/.

  14. A. E. Bondar, Phys. At. Nucl. 76, 1072 (2013).

    Article  Google Scholar 

  15. https://ctd.inp.nsk.su/c-tau/.

  16. J. Miller et al., J. Phys. Rad. 21, 755 (1960).

    Article  Google Scholar 

  17. C. P. Jupiter et al., Phys. Rev. 121, 866 (1961).

    Article  ADS  Google Scholar 

  18. L. Z. Dzhilavyan, in Proceedings of the 6th All-Union Conference on Accelerators of Charge Particles (JINR, Dubna, 1979), Vol. 2, p. 182; JINR Preprint P-0099 (Moscow, 1978) [in Russian].

  19. L. Z. Dzhilavyan and A. I. Karev, in Proceedings of the 7th All-Union Conference on Accelerators of Charge Particles (JINR, Dubna, 1981), Vol. 1, p. 209 [in Russian].

  20. S. S. Belyshev, L. Z. Dzhilavyan, and A. L. Polonski, Phys. At. Nucl. 83, 530 (2020).

  21. Industrial Electrophysical Equipment, The Handbook (Gosatomizdat, Moscow, 1963) [in Russian].

  22. V. F. Grushetzkiy, M. A. Zharenov, L. E. Lazareva, A. V. Makarov, V. V. Petrenko, V. N. Ponomarev, and V. A. Skorik, Vopr. At. Nauki Tekh., Ser.: Tekh. Fiz. Eksp., No. 1 (3), 44 (1979).

  23. A. K. Valter et al., in Proceedings of International Conference on Accelerators, Dubna, 1963 (Gosatomizdat, Moscow, 1964), pp. 420, 435 [in Russian].

  24. O. A. Valdner et al., Diaphragm Waveguide Handbook (Gosatomizdat, Moscow, 1969) [in Russian].

    Google Scholar 

  25. L. Z. Dzhilavyan, V. A. Obozny, and V. N. Ponomarev, Vopr. At. Nauki Tekh., Ser.: Linein. Uskor., No. 1 (2), 59 (1976).

  26. L. Smith, in Handbuch der Physik, Vol. XLIV: Instrumentelle Hilfsmittel der Kernphysik (Springer, Berlin, Göttingen, Heidelberg, 1959).

  27. I. A. Grishaev et al., in Proceedings of the All-Union Conference on Accelerators of Charge Particles (VINITI, Moscow, 1970), Vol. 1, p. 574.

  28. U. Kneissl et al., Nucl. Instrum. Methods Phys. Res. 127, 1 (1975).

    Article  ADS  Google Scholar 

  29. E. Hayward et al., Nucl. Instrum. Methods Phys. Res. 159, 289 (1979).

    Article  ADS  Google Scholar 

  30. Yu. G. Basargin et al., Vopr. At. Nauki Tekh., Ser.: Linein. Uskor., No. 1 (2), 7 (1976).

  31. P. Carlos, Thesis (Univ. Paris-SUD, Centre d’Orsay, Orsay, 1972).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Z. Dzhilavyan or A. I. Karev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhilavyan, L.Z., Karev, A.I. Specific Features of the Positron Acceleration Dynamics in Traveling-Wave Electron LINACs. Phys. Atom. Nuclei 83, 1349–1358 (2020). https://doi.org/10.1134/S1063778820090082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820090082

Keywords:

Navigation