Skip to main content
Log in

Baikal-GVD Experiment

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript


Baikal-GVD is a deep-underwater neutrino detector of cubic-kilometer scale. It is designed to detect astrophysical neutrinos up to multi-PeV energies and beyond. The deployment of this facility began in spring 2015. Since April 2020, the detector includes seven clusters, each consisting of eight strings carrying in total 288 optical modules located at depths of 750 to 1275 m. By the end of the first phase of construction of the detector in 2024, it is planned to deploy 15 clusters, whereby an effective volume of 0.75 km\({}^{3}\) for detecting high-energy cascades would be reached. The design and status of the Baikal-GVD detector are described in the present article along with selected results of data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  1. M. A. Markov, in Proceedings of the 1960 Annual International Conference on High-Energy Physics, Rochester, 1960, Ed. by E. C. G. Sudarshan, J. H. Tinlot, and A. C. Melissinos.

  2. IceCube Collab. (M. G. Aartsen et al.), Science (Washington, DC, U.S.) 342, 1242856 (2013).

    Article  Google Scholar 

  3. IceCube Collab (.M. G. Aartsen et al.), in Proceedings of the Very Large Volume Neutrino Telescopes (VLVnT-2018), EPJ Web Conf. 207, 02005 (2019).

  4. The IceCube Collab. et al., Science (Washington, DC, U.S.) 361, eaat1378 (2018).

  5. Baikal Collab. (I. A. Belolaptikov et al.), Astropart. Phys. 7, 263 (1997).

    Article  Google Scholar 

  6. Baikal Collab. (V. A. Balkanov et al.), in Proceedings of the 25th ICRC, Durban, South Africa, 1997, astro-ph/9705244v1.

  7. Baikal Collab. (A. D. Avrorin et al.), in Proceedings of the 36th ICRC, Madison, USA, PoS(ICRC2019) 1012 (2019).

  8. Baikal Collab. (A. D. Avrorin et al.), in Proceedings of the 36th ICRC, Madison, USA, PoS(ICRC2019) 878 (2019).

  9. D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw, FZKA 6019 (Forschungszentrum Karlsruhe, 1998).

  10. IceCube Collab., in Proceedings of the 36th ICRC, Madison, USA, PoS(ICRC2019) 1004 (2019).

  11. LIGO Scientific Collab. et al., Astrophys. J. Lett. 848, L12 (2017).

    Article  ADS  Google Scholar 

  12. ANTARES, IceCube, The Pierre Auger, LIGO Scientific, and Virgo Collabs., Astrophys. J. Lett. 850, L35 (2017).

    Article  ADS  Google Scholar 

  13. Super-Kamiokande Collab. (A. Abe et al.), Astrophys. J. Lett. 857, 1 (2018).

    Article  Google Scholar 

  14. Baikal Collab. (A. D. Avrorin et al.), JETP Lett. 108, 787 (2018).

    Article  Google Scholar 

Download references


This work was supported in part by Russian Science Foundation (grant nos. 20-02-00400 and 9-29-11029) and by a grant (no. 20-202-09) from Joint Institute for Nuclear Research for young scientists.

Author information

Authors and Affiliations


Corresponding author

Correspondence to G. B. Safronov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avrorin, A.V., Avrorin, A.D., Aynutdinov, V.M. et al. Baikal-GVD Experiment. Phys. Atom. Nuclei 83, 916–921 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: