Skip to main content
Log in

Modeling the Behavior of a MOS Transistor under Fast Neutron and Gamma Irradiation

  • Mathematical Modeling in Nuclear Technologies
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A numerical model of trapping of the radiation-induced charge in the bulk and on the surface of the oxide layer of a MOS transistor has been developed. The model takes into account the generation of point defects under fast neutron irradiation. The volume and surface charges obtained by the numerical modeling have been used to calculate the drain—gate characteristic of the MOS transistor exposed to neutron irradiation in different doses and accompanying high-energy gamma-ray irradiation. To model the effect of neutron irradiation, different methods for estimating the rate of point defect generation in a two-component material (SiO2) have been developed. The simulated drain—gate characteristic is shown to agree well with the experimental data obtained at the concentration of hole traps and their capture cross sections lying within the published data for an unirradiated device after exposure to gamma rays from a 60Co gamma source and after irradiation with fast neutrons with an average energy of ∼1 MeV and accompanying gamma rays using a pool-type reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. Winokur, J. R. Schwank, P. J. McWhorter, P. V. Dressendorfer, and D. C. Turpin, IEEE Trans. Nucl. Sci. 31, 1453 (1984).

    Article  ADS  Google Scholar 

  2. H. J. Barnaby, IEEE Trans. Nucl. Sci. 53, 3103 (2006).

    Article  ADS  Google Scholar 

  3. K. I. Tapero, V. N. Ulimov, and A. M. Chlenov, Radiation Effects in Silicon Integrated Circuits for Space Applications (BINOM, Moscow, 2012) [in Russian].

    Google Scholar 

  4. S. N. Rashkeev, C. R. Cirba, D. M. Fleetwood, R. D. Schrimpf, S. C. Witczak, A. Michez, and S. T. Pantelides, IEEE Trans. Nucl. Sci. 49, 2650 (2002).

    Article  ADS  Google Scholar 

  5. R. J. Graves, C. R. Cirba, R. D. Schrimpf, R. J. Milanowski, A. Michez, D. M. Fleetwood, S. C. Witczak, and F. Saigne, IEEE Trans. Nucl. Sci. 45, 2352 (1998).

    Article  ADS  Google Scholar 

  6. O. V. Aleksandrov, Semiconductors 48, 523 (2014).

    Google Scholar 

  7. M. A. Petukhov and A. I. Ryazanov, Phys. At. Nucl 79, 1571 (2016).

    Article  Google Scholar 

  8. M. A. Petukhov and A. I. Ryazanov, Yad. Fiz. Inzhin. 7, 145 (2016).

    Google Scholar 

  9. I. S. Esqueda, H. J. Barnaby, K. E. Holbert, and Y. Boulghassoul, IEEE Trans. Nucl. Sci. 58, 793 (2011).

    Article  ADS  Google Scholar 

  10. S. M. Y. Hasan, S. L. Kosier, R. D. Schrimpf, and K. F. Galloway, IEEE Trans. Nucl. Sci. 41, 2719 (1994).

    Article  ADS  Google Scholar 

  11. J. E. Gillberg, J. L. Titus, N. Hubbard, D. I. Burton, and C. F. Wheatley, in Proceedings of the Radiation Effects Data Workshop (IEEE, 2002).

  12. S. J. Vaidya, D. K. Sharma, and A. N. Chandorkar, in Proceedings of the 10th International Symposium on the Physical and Failure Analysis of Integrated Circuits IPFA, 2003, p. 151.

  13. V. Kilchytska, J. Alvorado, O. Militaru, G. Berger, and D. Flandre, Adv. Mater. Res. 276, 95 (2011).

    Article  Google Scholar 

  14. J. M. Benedetto and H. Boech, IEEE Trans. Nucl. Sci. 33, 1318 (1986).

    Article  ADS  Google Scholar 

  15. P. M. Lenahan and P. V. Dressendorfer, J. Appl. Phys. 55, 3495 (1984).

    Article  ADS  Google Scholar 

  16. C. D. Marshall, J. A. Speth, and S. A. Payne, J. Non-Cryst. Solids 212, 59 (1997).

    Article  ADS  Google Scholar 

  17. V. V. Afanas’ev and A. Stesmans, J. Phys.: Condens. Matter 12, 2285 (2000).

    ADS  Google Scholar 

  18. F. B. McLean, IEEE Trans. Nucl. Sci. 27, 1651 (1980).

    Article  ADS  Google Scholar 

  19. P. M. Lenahan, N. A. Bohna, and J. P. Campbell, IEEE Trans. Nucl. Sci. 49, 2708 (2002).

    Article  ADS  Google Scholar 

  20. N. S. Saks and D. B. Brown, IEEE Trans. Nucl. Sci. 36, 1848 (1989).

    Article  ADS  Google Scholar 

  21. S. N. Rashkeev, D. M. Fleetwood, R. D. Schrimpf, S. C. Witczak, A. Michez, and S. T. Pantelides, IEEE Trans. Nucl. Sci. 51, 3158 (2004).

    Article  ADS  Google Scholar 

  22. R. J. Krantz, L. W. Aukerman, and T. C. Zeitlow, IEEE Trans. Nucl. Sci. 34, 1196 (1987).

    Article  ADS  Google Scholar 

  23. J. R. Brews, Solid-State Electron. 21, 345 (1978).

    Article  ADS  Google Scholar 

  24. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  25. W. Chang, J. Electron. Mater. 21, 593 (1992).

    ADS  Google Scholar 

  26. T. Diaz de la Rubia and W. J. Phythian, J. Nucl. Mater. 191–194, 108 (1992).

    Article  ADS  Google Scholar 

  27. R. L. Pfeffer, J. Appl. Phys. 57, 5176 (1985).

    Article  ADS  Google Scholar 

  28. J. Wong, T. Diaz de la Rubia, M. W. Guinan, and M. Tobin, J. Nucl. Mater. 212–215, 143 (1994).

    Article  ADS  Google Scholar 

  29. G. S. Was, Fundamentals of Radiation Materials Science (Springer, Berlin, 2007).

    Google Scholar 

  30. M. J. Norgett, M. T. Robinson, and I. M. Torrens, Nucl. Eng. Des. 33, 50 (1975).

    Article  Google Scholar 

  31. D. M. Fleetwood, IEEE Trans. Nucl. Sci. 55, 2986 (2008).

    Article  ADS  Google Scholar 

  32. J. M. Aitken and D. R. Young, J. Appl. Phys. 47, 1196 (1976).

    Article  ADS  Google Scholar 

  33. I. C. Chen, S. Holland, and C. Hu, J. Appl. Phys. 61, 4544 (1987).

    Article  ADS  Google Scholar 

  34. V. V. Afanas’ev and A. Stesmans, Europhys. Lett. 53, 233 (2001).

    Article  ADS  Google Scholar 

  35. M. A. Jupina and P. M. Lenahan, IEEE Trans. Nucl. Sci. 36, 1800 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Petukhov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2018, published in Yadernaya Fizika i Inzhiniring, 2018, Vol. 9, No. 3, pp. 271–282.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petukhov, M.A., Ryazanov, A.I. Modeling the Behavior of a MOS Transistor under Fast Neutron and Gamma Irradiation. Phys. Atom. Nuclei 82, 1466–1475 (2019). https://doi.org/10.1134/S1063778819120214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819120214

Keywords

Navigation