Skip to main content

The Amplitude Defect of SiC Detectors during the Recording of Accelerated Xe Ions


The properties of detectors based on epitaxial layers of silicon carbide (SiC) are presented. It is shown that the developed detectors have good spectrometric characteristics when detecting a particles with energies of up to 8 MeV. The pulse height defect was measured in SiC detectors under irradiation by accelerated xenon ions with different energies. It is shown that this parameter in the spectroscopic analysis of Xe ions is ∼45% of the true energy of the particles in question.

This is a preview of subscription content, access via your institution.


  1. M. Bruzzi, H. F.-W. Sadrozinski, and A. Seiden, Nucl. Instrum. Methods Phys. Res. A 579, 754 (2007).

    ADS  Article  Google Scholar 

  2. L. Hrubčín, Yu. B. Gurov, B. Zat’ko, O. M. Ivanov, S. V. Mitrofanov, S. V. Rozov, V. G. Sandukovsky, V. A. Semin, and V. A. Skuratov, Instrum. Exp. Tech. 61, 769 (2018).

    Article  Google Scholar 

  3. S. E. Saddow and A. Anant, Advances in Silicon Carbide Processing and Applications (Arthech House, Boston, 2004).

    Google Scholar 

  4. J. B. Moulton, J. E. Stephenson, R. P. Schmitt, and G. J. Wozniak, Nucl. Instrum. Methods Phys. Res. 157, 325 (1978).

    ADS  Article  Google Scholar 

  5. L. Hrubcin et al., J. Instrum. 13, 11005 (2018).

    Article  Google Scholar 

  6. S. Onoda et al., IEEE Trans. Nucl. Sci. 54, 2706 (2007).

    ADS  Article  Google Scholar 

  7. S. Onoda et al., Mater. Sci. Forum 615-617, 861 (2009).

    Article  Google Scholar 

  8. O. Beliuskina, A. O. Strekalovsky, A. A. Aleksandrov, et al., Eur. Phys. J. A 53, 32 (2017).

    ADS  Article  Google Scholar 

  9. B. D. Wilkins et al., Nucl. Instrum. Methods Phys. Res. 92, 381 (1971).

    ADS  Article  Google Scholar 

  10. F. Dubecky, E. Gombia, C. Ferrari, et al., J. Instrum. 7, 09005 (2012).

    Article  Google Scholar 

  11. Yu. B. Gurov, S. V. Rozov, V. G. Sandukovsky, E. A. Yakushev, L. Hrubcin, and B. Zat’ko, Instrum. Exp. Tech. 58, 22 (2015).

    Article  Google Scholar 

  12. Yu. B. Gurov, K. N. Gusev, V. S. Karpukhin, S. V. Lapushkin, P. V. Morokhov, V. G. Sandukovsky, and J. Yurkowski, Instrum. Exp. Tech. 49, 624 (2006).

    Article  Google Scholar 

  13. B. N. Gikal, G. G. Gulbekyan, S. N. Dmitriev, S. L. Bogomolov, O. N. Borisov, I. A. Ivanenko, N. Yu. Kazarinov, V. I. Kazacha, I. V. Kalagin, I. V. Kolesov, M. N. Sazonov, A. V. Tikhomirov, and J. Franko, Phys. Part. Nucl. Lett. 7, 557 (2010).

    Article  Google Scholar 

  14. J. F. Ziegler, Nucl. Instrum. Meth. Phys. Res., Sect. B 219-220, 1027 (2004).

    ADS  Article  Google Scholar 

Download references


This work was supported in part by the Scientific Grant Agency of the Slovak Republic, project nos. 2/0152/16 and 2/0092/18.

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. V. Rozov.

Additional information

Conflict of Interest

The authors declare that they have no conflicts of interest.

Russian Text © The Author(s), 2019, published in Yadernaya Fizika i Inzhiniring, 2019, Vol. 10, No. 3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hrubčín, L., Gurov, Y.B., Zat’ko, B. et al. The Amplitude Defect of SiC Detectors during the Recording of Accelerated Xe Ions. Phys. Atom. Nuclei 82, 1682–1685 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • silicon carbide
  • detector
  • energy resolution
  • heavy ion
  • amplitude defect