Skip to main content
Log in

Fusion and Space

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

“Earth is the cradle of humanity, but one cannot live in the cradle forever”

K. E. Tsiolkovsky

Abstract

A new concept in the development of plasma rocket engines is discussed. The development based on the results of many years of research on nuclear fusion and physics of hot plasma is implementing a concept with magnetic insulation of the plasma flow and electrodeless high-frequency methods for introducing energy into the plasma. The scheme is far superior to the traditional concepts of electrojet rocket engines in terms of its capabilities and prospects for the development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Y. Choueiri, J. Propuls. Power 20, 193 (2004).

    Article  Google Scholar 

  2. R. G. Jahn and E. Y. Choueiri, Electric Propulsion. Encyclopedia of Physical Science and Technology (Academic, New York, 2002), Vol. 5.

  3. A. I. Morozov, Plasma Phys. Rep. 29, 235 (2003).

    Article  ADS  Google Scholar 

  4. M. J. L. Turner, Rocket and Spacecraft Propulsion-Principle, Practice and New Development, 3rd ed. (Springer, 2009).

    Google Scholar 

  5. E. Ahedo, Plasma Phys. Control. Fusion 53, 124037 (2011).

    Article  ADS  Google Scholar 

  6. D. M. Goebel and I. Katz, Fundamentals of Electric Propulsion: Ion and Hall Thrusters, JPL Space Science and Technology Series (2008).

    Book  Google Scholar 

  7. V. A. Shchepetilov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 40 (2), 5 (2017).

    Google Scholar 

  8. O. A. Gorshkov, V. A. Muravlev, and A. A. Shagaida, Hall and Ion Plasma Engines for Spacecraft (Mashinostroenie, Moscow, 2008) [in Russian].

    Google Scholar 

  9. A. I. Morozov and V. V. Savelyev, Rev. Plasma Phys. 21, 203 (2000).

    Article  ADS  Google Scholar 

  10. A. I. Morozov, Physical Principles of Space Electrojet Engines, Vol. 1: Elements of Flow Dynamics in Electrojet Engines (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  11. K. N. Kozubskii, V. M. Murashko, Yu. P. Rylov, Yu. V. Trifonov, V. P. Khodneno, V. Kim, G. A. Popov, and V. A. Obukhov, Plasma Phys. Rep. 29, 267 (2003).

    Article  Google Scholar 

  12. H. R. Kaufman and R. S. Robinson, AIAA J. 20, 745 (1982).

    Article  ADS  Google Scholar 

  13. I. I. Khamits, I. M. Filippov, L. S. Burylov, S. M. Tenenbaum, A. V. Perfil’ev, and D. I. Gusak, Kosm. Tekh. Tekhnol., No. 1 (16), 32 (2017).

    Google Scholar 

  14. A. S. Lovtsov, A. A. Shagayda, V. A. Muravlev, and M. Y. Selivanov, Preprint IEPC-2015-291 (IEPC, 2015).

    Google Scholar 

  15. A. S. Lovtsov and M. Yu. Selivanov, Izv. Akad. Nauk SSSR, Energet., No. 6, 3 (2014).

    Google Scholar 

  16. S. J. Hall, B. A. Jorns, A. D. Gallimore, H. Kamhawi, T. W. Haag, J. A. Mackey, J. H. Gilland, P. Y. Peterson, and M. J. Baird, Preprint IEPC-2017-228 (IEPC, 2017).

    Google Scholar 

  17. R. R. Hofer and T. M. Randolph, J. Propuls. Power 29, 166 (2013).

    Article  Google Scholar 

  18. E. Yu. Kuvshinova, V. N. Akimov, N. I. Arkhangel’skii, and V. M. Nesterov, Kosm. Tekh. Tekhnol., No. 3 (14), 62 (2016).

    Google Scholar 

  19. A. A. Sinitsyn, Kosm. Tekh. Tekhnol., No. 4 (15), 80 (2016).

    Google Scholar 

  20. S. N. Bathgate, M. M. M. Bilek, and D. R. McKenzie, Plasma Sci. Technol. 19, 083001 (2017).

    Article  ADS  Google Scholar 

  21. E. A. Bering III, B. W. Longmier, T. W. Glover, F. R. Chang-Diaz, J. P. Squire, and M. Brukardt, AIAA Paper AIAA-2009-245 (AIAA, 2009).

    Google Scholar 

  22. A. V. Timofeev, Resonance Phenomena in Plasma Oscillations (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  23. T. Stix, Theory of Plasma Waves (Literary Licensing, 2012; Atomizdat, Moscow, 1965).

    MATH  Google Scholar 

  24. A. V. Zvonkov and A. V. Timofeev, Sov. J. Plasma Phys. 13, 158 (1987).

    Google Scholar 

  25. J. M. Dawson, H. C. Kim, D. Arnush, B. D. Fried, R. W. Gould, L. O. Heflinger, C. F. Kennel, T. E. Romesser, R. L. Stenzel, A. Y. Wong, and R. F. Wuerker, Phys. Rev. Lett. 37, 1547 (1976).

    Article  ADS  Google Scholar 

  26. D. A. Dolgolenko and Yu. A. Muromkin, Phys. Usp. 52, 345 (2009).

    Article  ADS  Google Scholar 

  27. R. W. Boswell, Plasma Phys. Control. Fus. 26, 1147 (1984).

    Article  ADS  Google Scholar 

  28. F. F. Chen, Plasma Sources Sci. Technol. 24, 014001 (2015).

    Article  ADS  Google Scholar 

  29. R. D. Tarey, B. B. Sahu, and A. Ganguli, Phys. Plasmas 19, 073520 (2012).

    Article  ADS  Google Scholar 

  30. F. R. Chang Diaz, J. P. Squire, T. Glover, A. J. Petro, E. A. Bering III, F. W. Baity, R. H. Goulding, M. D. Carter, R. D. Bengtson, and B. N. Breizman, AIAA-2004-0149 (AIAA, 2004).

    Google Scholar 

  31. D. A. Panov and A. V. Timofeev, Plasma Phys. Rep. 21, 1031 (1995).

    ADS  Google Scholar 

  32. F. R. Chang Diaz, Sci. Am. 283 (5), 91 (2000).

    Google Scholar 

  33. F. Chang Diaz and E. Seedhouse, To Mars and Beyond, Fast! How Plasma Propulsion Will Revolutionize Space Exploration (Springer Praxis Books, New York, 2017).

    Google Scholar 

  34. B. W. Longmier, J. P. Squire, C. S. Olsen, L. D. Cassady, M. G. Ballenger, M. D. Carter, A. V. Ilin, T. W. Glover, G. E. McCaskill, F. R. Chang Diaz, and E. A. Bering III, J. Propuls. Power 30, 123 (2014).

    Article  Google Scholar 

  35. J. P. Squire, M. D. Carter, F. R. Chang Diaz, L. Dean, M. Giambusso, T. G. Glover, J. Castro, and J. del Valle, AIAA-2016-4950 (AIAA, 2016).

    Google Scholar 

  36. T. W. Glover, F. R. Chang Diaz, A. V. Ilin, and R. Vondra, IEPC-2007-244 (IEPC, 2007).

    Google Scholar 

  37. J. P. Squire, M. D. Carter, F. R. Chang Diaz, M. Giambusso, A. V. Ilin, C. S. Olsen, and E. A. Bering III, AIAA-2014-4173 (AIAA, 2014).

    Google Scholar 

  38. A. V. Ilin, D. A. Gilman, M. D. Carter, F. R. Chang Diaz, J. P. Squire, and J. E. Farrias, IEPC-2013-336 (IEPC, 2013).

    Google Scholar 

  39. F. R. Chang Diaz, M. D. Carter, T. W. Glover, A. V. Ilin, C. S. Olsen, J. P. Squire, R. J. Litchford, N. Harada, and S. L. Koontz, in Proceedings of Nuclear and Emerging Technologies for Space, Albuquerque, NM, Feb. 25-28, 2013, Paper 6777.

    Google Scholar 

  40. E. A. Bering III, M. Giambusso, M. Carter, A. Ilin, C. Olsen, J. P. Squire, F. R. Chang Diaz, and B. W. Longmier, AIAA-2014-4344 (AIAA, 2014).

    Google Scholar 

  41. A. V. Ilin, L. D. Cassady, T. W. Glover, and F. R. Chang Diaz, in Proceedings of the Space, Propulsion and Energy Sciences International Forum, College Park, March 15-17, 2011.

    Google Scholar 

  42. J. Cassibry, R. Cortez, M. Stanic, A. Watts, W. Seidler, R. Adams II, G. Statham, and L. Fabisinski, J. Spacecr. Rockets 52, 595 (2015).

    Article  ADS  Google Scholar 

  43. Zh. R. Ross, in Ion, Plasma and Arc Rocket Engines (Gosatomizdat, Moscow, 1961), pp. 289–311 [in Russian].

    Google Scholar 

  44. J. F. Santarius, in Proceedings of the Workshop on D3He Based Reactor Studies, Moscow, Russia, Sept. 25-Oct. 2, 1991.

    Google Scholar 

  45. J. C. F. Thio, P. J. Turchi, and J. F. Santarius, AIAA-2001-3669 (AIAA, 2001).

    Google Scholar 

  46. C. H. Williams, L. A. Dudzinski, S. K. Borowski, and A. J. Juhasz, J. Spacecr. Rockets 39, 874 (2002).

    Article  ADS  Google Scholar 

  47. M. V. Koval’chuk, V. I. Il’gisonis, and V. M. Kulygin, Priroda, No. 12, 33 (2017).

    Google Scholar 

  48. V. V. Arsenin, V. A. Zhil’tsov, V. M. Kulygin, O. I. Obrezkov, A. V. Pereslavtsev, and A. V. Spitsyn, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 41 (2), 13 (2018).

    Google Scholar 

  49. M. S. Novikov, D. P. Ivanov, S. I. Novikov, and S. A. Shuvaev, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 37 (4), 22 (2014).

    Google Scholar 

  50. A. V. Berezkin, E. Yu. Bragin, V. A. Zhil’tsov, V. M. Kulygin, and S. V. Yanchenkov, Phys. At. Nucl. 78, 1120 (2015).

    Article  Google Scholar 

  51. C. Charles, R. W. Boswell, and K. Takahashi, Plasma Phys. Control. Fusion 54, 124021 (2012).

    Article  ADS  Google Scholar 

  52. K. Takahahsi, A. Komuro, and A. Ando, IEPC-2015-294 (IEPC, 2015).

    Google Scholar 

  53. E. P. Velikhov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez 41 (2), 5 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kulygin.

Additional information

Russian Text © The Author(s), 2018, published in Voprosy Atomnoi Nauki i Tekhniki, Seriya: Termoyadernyi Sintez, 2018, Vol. 41, No. 3, pp. 5–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhil’tsov, V.A., Kulygin, V.M. Fusion and Space. Phys. Atom. Nuclei 82, 963–976 (2019). https://doi.org/10.1134/S1063778819070135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819070135

Keywords

Navigation