Skip to main content
Log in

Concept of the Fuel Cycle of the IGNITOR Tokamak

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

In 2015, the development of the conceptual design of IGNITOR, a Russian–Italian experimental thermonuclear tokamak, was completed, and the parameters of all the systems, including the fuel system, were determined. In this work, an integrated design of arrangement of all the tritium-containing gas and secondary water streams expected in the operation of the IGNITOR tokamak was proposed on the basis of analyzing the designs of the fuel cycles of the large thermonuclear facilities JET, TFTR, and ITER. This design includes the storage of deuterium and tritium in a system of gas cylinders at a pressure of 0.4 MPa, the purification of the exhaust gas mixture from the plasma chamber using a “hot getter,” the separation of the deuterium–tritium isotope mixture by displacement gas chromatography, the purification of the process gas and air streams in a wet scrubber, and the detritiation of the water streams by chemical isotope exchange of hydrogen with water. The main technical parameters of equipment in the proposed design were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Cherkovets, Russian-Italian IGNITOR Experimental Tokamak Project, Presentation 2010. http://2010.atomexpo.ru/mediafiles/u/files/Present/.

    Google Scholar 

  2. http://www.atomic-energy.ru/Ignitor.

  3. C. Rizello and S. Tosti, Fusion Eng. Des. 83, 594 (2008).

    Article  Google Scholar 

  4. E. A. Azizov et al., in Proceedings of the Symposium of Fusion Technology, San Sebastian, Spain, Sept. 29–Oct. 3, 2014, P3–018.

    Google Scholar 

  5. M. B. Zucchetti et al., Fusion Eng. Des. 98–99, 2235 (2015).

    Article  Google Scholar 

  6. A. N. Perevezentsev et al., Fusion Technol. 28, 1404 (1995).

    Article  Google Scholar 

  7. R. Lasser et al., Fusion Eng. Des. 47, 173 (1999).

    Article  Google Scholar 

  8. R. Lasser et al., Fusion Eng. Des. 47, 333 (1999).

    Article  Google Scholar 

  9. J. Koonce et al., Fusion Technol. 28, 630 (1995).

    Article  Google Scholar 

  10. A. N. Perevezentsev et al., J. Alloys Compd. 335, 246 (2002).

    Article  Google Scholar 

  11. A. Perevezentsev et al., Fusion Eng. Des. 47, 355 (1999).

    Article  Google Scholar 

  12. B. M. Andreev, A. S. Polevoi, and A. N. Perevezentsev, Sov. At. Energy 45, 710 (1979).

    Article  Google Scholar 

  13. R. Lasser et al., Fusion Eng. Des. 47, 301 (1999).

    Article  Google Scholar 

  14. D. P. Wong et al., Fusion Technol. 21, 572 (1992).

    Article  Google Scholar 

  15. F. Sabathier et al., Fusion Eng. Des. 54, 547 (2001).

    Article  Google Scholar 

  16. A. N. Perevezentsev et al., Fusion Sci. Technol. 56, 1455 (2009).

    Article  Google Scholar 

  17. M. Rozenkevich et al., Fusion Eng. Des. 70, 435 (2016).

    Google Scholar 

  18. A. N. Perevezentsev et al., Fusion Eng. Des. 85, 1206 (2010).

    Article  Google Scholar 

  19. W. R. C. Graham et al., Fusion Eng. Des. 41, 1137 (2002).

    Google Scholar 

Download references

Acknowledgments

This work was performed using equipment of the Unique Research Facility TSP Plant Complex.

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (project unique identifier RFMEFI59917X0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Rozenkevich.

Additional information

Russian Text © The Author(s), 2018, published in VANT. Seriya: Termoyadernyi Sintez, 2018, Vol. 41, No. 1, pp. 83–89.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevezentsev, A.N., Rozenkevich, M.B. & Subbotin, M.L. Concept of the Fuel Cycle of the IGNITOR Tokamak. Phys. Atom. Nuclei 82, 1055–1059 (2019). https://doi.org/10.1134/S1063778819070093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819070093

Keywords

Navigation