Skip to main content
Log in

Hydrogen Retention in Tungsten Alloys Developed for Fusion Facilities (Review)

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

This review is focused on the effect of doping with various elements on retention in tungsten. Although tungsten is one of the most promising plasma-facing materials (PFMs), it still has a number of drawbacks. Doping is proposed as a way to make tungsten more suitable for PFM applications. A considerable number of tungsten alloys have already been developed in the course of fusion research. Doping may alter the parameters of hydrogen retention in tungsten, and this should be taken into account in selecting the materials for fusion facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Roth, E. Tsitron, Th. Loarer, V. Philips, et al., Plasma Phys. Control. Fus. 50 (10) (2008).

    Google Scholar 

  2. C. Ren, Z. Fang, M. Koopman, B. Butler, et al., Int. J. Refract. Met. Hard Mater. 75, 170 (2018).

    Article  Google Scholar 

  3. W. Qiu, Y. Pang, Z. Xiao, and Z. Li, Int. J. Refract. Met. Hard Mater. 61, 91 (2016).

    Article  Google Scholar 

  4. D. Jiang, Q. Zhou, Li Xue, T. Wang, et al., Fusion Eng. Des. 130, 56 (2018).

    Article  Google Scholar 

  5. H. Kurishita, S. Matsuo, H. Arakawa, T. Sakamoto, et al., Phys. Scr. T 159, 014032 (2014).

    Article  ADS  Google Scholar 

  6. L. Veleva, Z. Oksiuta, U. Vogt, et al., Fusion Eng. Des. 84, 1920 (2009).

    Article  Google Scholar 

  7. M. Battabyal, R. Schäublin, P. Spatig, et al., J. Nucl. Mater. 442, S225 (2013).

    Article  Google Scholar 

  8. R. Liu, Y. Zhou, T. Hao, et al., J. Nucl. Mater. 424, 171 (2012).

    Article  ADS  Google Scholar 

  9. L.-M. Luo, J.-B. Chen, J.-S. Lin, X. Zhan, et al., Fusion Eng. Des. 129, 120 (2018).

    Article  Google Scholar 

  10. J.-S. Lin, L.-M. Luo, Q. Xu, X. Zhan, et al., J. Nucl. Mater. 490, 272 (2017).

    Article  ADS  Google Scholar 

  11. Y. Kim, K. H. Lee, E.-H. Kim, and D.-U. Cheong, Int. J. Refract. Met. Hard Mater. 27, 842 (2009).

    Article  Google Scholar 

  12. J.-S. Lin, L.-M. Luo, Q. Xu, X. Zhan, et al., J. Nucl. Mater. 490, 272 (2017).

    Article  ADS  Google Scholar 

  13. I. Smid, M. Akiba, G. Vieider, et al., J. Nucl. Mater. 258, 160 (1998).

    Article  ADS  Google Scholar 

  14. M. Battabyal, R. Schaublin, P. Spätig, et al., Mater. Sci. Eng. A 538, 53 (2012).

    Article  Google Scholar 

  15. S. Wang, J. Zhang, L.-M. Luo, and X. Zhan, Powder Technol. 301, 65 (2016).

    Article  Google Scholar 

  16. Y. Ishijima, S. Kannari, H. Kurishita, et al., Mater. Sci. Eng. A 473, 7 (2008).

    Article  Google Scholar 

  17. S. Miao, Z. M. Xie, L. F. Zeng, T. Zhang, et al., Fusion Eng. Des. 125, 490 (2017).

    Article  Google Scholar 

  18. Y. Xiao, B. Huang, B. He, K. Shi, et al., Int. J. Refract. Met. Hard Mater. (2018, in press).

    Google Scholar 

  19. A. Patra, R. R. Sahoo, S. K. Karak, and S. K. Sahoo, Int. J. Refract. Met. Hard Mater. 70, 134 (2018).

    Article  Google Scholar 

  20. V. E. Ivanov, E. P. Nechiporenko, L. N. Efimenko, and M. I. Yurchenko, Protection of Tungsten against Oxidation at High Temperatures (Atomizdat, Moscow, 1968) [in Russian].

    Google Scholar 

  21. D.-G. Liu, L. Zhang, L.-M. Luo, X. Zhan, et al., J. Alloys Compd. 765, 299 (2018).

    Article  Google Scholar 

  22. R. Neu, J. Riesch, J. W. Coenen, J. Brinkmann, et al., Fusion Eng. Des. 109-111, 1046 (2016).

    Article  Google Scholar 

  23. O. V. Ogorodnikova, M. Mayer, and J. Roth, J. Nucl. Mater. 313-316, 469 (2003).

    Article  ADS  Google Scholar 

  24. V. Kh. Alimov, B. Tyburska-Puschel, S. Lindig, Y. Hatano, et al., J. Nucl. Mater. 420, 519 (2012).

    Article  ADS  Google Scholar 

  25. R. A. Anderl, R. G. Pawelko, and S. T. Schuetz, J. Nucl. Mater. 290-293, 38 (2001).

    Article  ADS  Google Scholar 

  26. V. Kh. Alimov and B. M. U. Scherzer, J. Nucl. Mater. 240, 75 (1996).

    Article  ADS  Google Scholar 

  27. A. A. Haasz, J. W. Davis, M. Poon, and R. G. Macaulay-Newcombe, J. Nucl. Mater. 258-263, 889 (1998).

    Article  ADS  Google Scholar 

  28. V. Kh. Alimov, J. Roth, and M. Mayer, J. Nucl. Mater. 337-339, 619 (2005).

    Article  ADS  Google Scholar 

  29. V. Kh. Alimov, J. Roth, and M. Mayer, J. Nucl. Mater. 337-339, 619 (2005).

    Article  ADS  Google Scholar 

  30. T. Venhaus, R. Causey, R. Doerner, and T. Abeln, J.Nucl. Mater. 290-293, 505 (2001).

    Article  ADS  Google Scholar 

  31. M. Balden, V. Rohde, S. Lindig, A. Manhard, et al., J. Nucl. Mater. 438, S220 (2013).

    Article  Google Scholar 

  32. K. Ouaras, K. Hassouni, L. Colina-Delacqua, G. Lombard, et al., J. Nucl. Mater. 466, 65 (2015).

    Article  ADS  Google Scholar 

  33. W. Wang, J. Roth, S. Lindug, and C. H. Wu, J. Nucl. Mater. 299, 124 (2001).

    Article  ADS  Google Scholar 

  34. A. Manhard, K. Schmid, M. Balden, and W. Jacob, J. Nucl. Mater. 415, 632 (2011).

    Article  ADS  Google Scholar 

  35. M. Oya, H. T. Lee, A. Hara, K. Ibano, et al., Nucl. Mater. Energy 12, 674 (2017).

    Article  Google Scholar 

  36. S. Nagata and K. Tahkahiro, Nucl. Mater. Energy 290-293, 135 (2001).

    Article  ADS  Google Scholar 

  37. A. van Veen, H. A. Filius, J. D. Vries, K. B. Bijkerk, et al., Nucl. Mater. Energy 155-157, 1117 (1988).

    ADS  Google Scholar 

  38. H. Eleveld and A. van Veen, Nucl. Mater. Energy 212-215, 1421 (1994).

    Article  ADS  Google Scholar 

  39. J. H. Yu, M. Simmonds, M. J. Baldwin, and R. P. Doerner, Nucl. Mater. Energy 12, 749 (2017).

    Article  Google Scholar 

  40. R. A. Anderl, R. J. Pawelko, and S. T. Schuetz, J. Nucl. Mater. 290-293, 38 (2001).

    Article  ADS  Google Scholar 

  41. A. V. Golubeva, Cand. Sci. (Phys. Math.) Dissertation (Moscow, 2006).

    Google Scholar 

  42. A. V. Golubeva, M. Mayer, J. Roth, V. A. Kurnaev, et al., J. Nucl. Mater. 363-365, 893 (2007).

    Article  ADS  Google Scholar 

  43. F. A. Shunk, Constitution of Binary Alloys (McGraw-Hill, New York, 1967).

    Google Scholar 

  44. Naidu Nagender and P. Rao Rama, Phase Diagrams of Binary Tungsten Alloys (Indian Inst. of Metals, Calcutta, 1991).

    Google Scholar 

  45. E. Y. Ivanov, C. Suryanarayana, and B. D. Bryskin, Mater. Sci. Eng. A 251, 255 (1998).

    Article  Google Scholar 

  46. F. H. Froes, B. D. Bryskin, C. R. Clark, C. Suryanarayana, et al., in Rhenium and Rhenium Alloys (TMS, Warrendale, PA, 1997), p. 569.

    Google Scholar 

  47. Y. Hatano, K. Ami, V. Kh. Alimov, S. Kondo, et al., Nucl. Mater. Energy 9, 93 (2016).

    Article  Google Scholar 

  48. K. Schmid, V. Rieger, and A. Manhard, J. Nucl. Mater. 426, 247 (2017).

    Article  ADS  Google Scholar 

  49. D. Nguyen-Manh, M. Muzyk, K. Kurzydlowski, N. Baluc, et al., Mater. Struct. Micromech. Fract. 465, 15 (2011).

    Google Scholar 

  50. M. Rieth, D. Armstrong, B. Dafferner, S. Heger, A. Hoffmann, et al., Adv. Sci. Technol. 73, 11 (2010).

    Article  Google Scholar 

  51. Y. Zayachuk, G. Bousselin, J. Schuurmans, Yu. Gasparyan, et al., Fusion Eng. Des. 86, 1153 (2011).

    Article  Google Scholar 

  52. M. Zibrov, M. Mayer, E. Markina, K. Sugiyama, et al., Phys. Scr. T 159, 014050 (2014).

    Article  ADS  Google Scholar 

  53. M. Oya, K. Uekita, H. T. Lee, Y. Ohtsuka, et al., J. Nucl. Mater. 438, S1052 (2013).

    Article  Google Scholar 

  54. M. Oya, H. T. Lee, Y. Ohtsuka, et al., Phys. Scr. T 159, 014048 (2014).

    Article  ADS  Google Scholar 

  55. M. Zibrov, M. Mayer, L. Gao, S. Elgeti, et al., J. Nucl. Mater. 463, 1045 (2015).

    Article  ADS  Google Scholar 

  56. M. Zibrov, K. Bystrov, M. Mayer, T. W. Morgan, and H. Kurishita, J. Nucl. Mater. 494, 211 (2017).

    Article  ADS  Google Scholar 

  57. R. Causey, K. Wilson, T. Venhaus, and W. R. Wampler, J. Nucl. Mater. 266-269, 467 (1999).

    Article  ADS  Google Scholar 

  58. M. Zhao, W. Jacob, L. Gao, A. Manhard, et al., Nucl. Mater. Energy 15, 32 (2018).

    Article  Google Scholar 

  59. Y. Tan, Y. Y. Lian, F. Feng, Z. Chen, J. B. Wang, et al., J. Nucl. Mater. 509, 145 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported in part by the Ministry of Education and Science of the Russian Federation (identifier RFMEFI61317X0084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Golubeva.

Additional information

Russian Text © The Author(s), 2018, published in Voprosy Atomnoi Nauki i Tekhniki, Seriya: Termoyadernyi Sintez, 2018, Vol. 41, No. 4, pp. 26–37.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubeva, A.V., Cherkez, D.I. Hydrogen Retention in Tungsten Alloys Developed for Fusion Facilities (Review). Phys. Atom. Nuclei 82, 996–1004 (2019). https://doi.org/10.1134/S1063778819070068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819070068

Keywords

Navigation