Skip to main content
Log in

Deuterium Permeation Through Reduced Activation V-4Cr-4Ti Alloy and V-4Cr-4Ti Alloy with AlN/Al Coatings

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Vanadium alloys are considered as candidate structural materials for thermonuclear fusion reactors (FR) and fast neutron reactors. Some properties of vanadium alloys are especially attractive for FR: fast decay of induced activity, durability in liquid lithium, high temperature strength. At the same time vanadium alloys absorb and dissolve hydrogen isotopes, and hydrogen fluxes through them are quite high. Hydrogen affects on plasticity of vanadium alloys and significantly decreases it at high concentrations. This should be taken into account considering the possibility of vanadium alloys usage as the material of fusion and fission reactors, especially if these materials are assumed to be in contact with radioactive tritium. In this work deuterium permeation through V-4Cr-4Ti alloy with deposited AlN coatings on an adhesion sublayer of Al on it was investigated. Deposition of insulating coatings on blanket structural materials allows to reduce the influence of strong magnetic fields of the tokamak on liquid metal coolant (e.g., lithium flow). It has been demonstrated that the coatings also reduce deuterium permeating fluxes by several times in comparison with V-4Cr-4Ti covered with natural oxide film and about 3–4 orders of magnitude in comparison with literature data for vanadium and its alloys with oxide-free surfaces. Taking into account thermomechanical and insulating properties, moderate swelling under neutron irradiation, thermal conductivity an order of magnitude higher than that of oxide coatings AlN coatings seem to be attractive for application in FR both as insulating and as a coating for hydrogen permeability suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Subbotin, D. K. Kurbatov, and L. G. Golubchikov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez, No. 1, 30 (2009).

    Google Scholar 

  2. A. K. Shikov and V. A. Beliakov, J. Nucl. Mater. 367–370, 1298 (2007).

    Article  ADS  Google Scholar 

  3. S. N. Votinov, G. G. Bondarenko, A. I. Dedyurin, and I. V. Borovitskaya, Russ. Metall. 2003, 150 (2003).

    Google Scholar 

  4. M. L. Grossbeck, J. Nucl. Mater. 307–311 615 (2002).

    Article  ADS  Google Scholar 

  5. O. A. Alekseev, S. N. Votinov, I. N. Gubkin, Yu. V. Karasev, V. P. Kolotushkin, S. A. Nikulin, L. V. Potanina, S. G. Sergeev, and D. V. Sokolovskii, Perspekt. Mater., No. 4, 34 (2009).

    Google Scholar 

  6. D. A. Blokhin, M. M. Potapenko, V. M. Chernov, A. I. Blokhin, N. A. Demin, and I. V. Sipachev, Perspekt. Mater., No. 5, 41 (2010).

  7. V. P. Kolotov, Extended Abstract of Doctoral (Chem.) Dissertation (Vernadsky Inst. Geochem. Anal. Chem., Moscow, 2007).

    Google Scholar 

  8. B. A. Loomis, D. L. Smith, and F. A. Garner, J. Nucl. Mater. 179–181, 771 (1991).

    Article  ADS  Google Scholar 

  9. D. L. Smith, H. M. Chung, B. A. Loomis, and H.-C. Tsai, J. Nucl. Mater. 233–237 356 (1996).

    Article  ADS  Google Scholar 

  10. M. Fujiwara, K. Takanashi, M. Satou, A. Hasegawa, K. Abe, K. Kakiuchi, and T. Furuya, J. Nucl. Mater. 329–333 452 (2004).

    Article  ADS  Google Scholar 

  11. D. V. Markovskij, R. A. Forrest, H. Freiesleben, D. Richter, K. Seidel, S. Unholzer, V. D. Kovalchuk, and V. I. Tereshkin, Fusion Eng. Des. 51–52 695 (2000).

    Article  Google Scholar 

  12. V. M. Chernov, M. V. Leonteva-Smirnova, M. M. Potapenko, N. I. Budylkin, Yu. N. Devyatko, A. G. Ioltoukhovskiy, E. G. Mironova, A. K. Shikov, A. B. Sivak, G. N. Yermolaev, A. N. Kalashnikov, B. V. Kuteev, A. I. Blokhin, N. I. Loginov, V. A. Romanov, et al., Nucl. Fusion 47, 839 (2007).

    Article  ADS  Google Scholar 

  13. I. B. Kupriyanov, E. N. Bazaleev, L. A. Kurbatova, I. E. Lyublinski, A. V. Vertkov, and V. A. Evtikhin, Fusion Eng. Des. 75–79 885 (2005).

    Article  Google Scholar 

  14. N. I. Budilkin, A. B. Alekseev, I. V. Golikov, Yu. I. Kazennov, V. F. Khramtsov, E. G. Mironova, and A. V. Tselischev, J. Nucl. Mater. 233–237 431 (1996).

    Article  ADS  Google Scholar 

  15. J. M. Chen, V. M. Chernov, R. J. Kurtz, and T. Muroga, J. Nucl. Mater. 417, 289 (2011).

    Article  ADS  Google Scholar 

  16. R. Bhattacharyay, Fusion Eng. Des. 89, 1107 (2014).

    Article  Google Scholar 

  17. I. E. Lyublinski, V. A. Evtikhin, A. V. Vertkov, N. I. Ezhov, and V. M. Shcherbakov, Fusion Eng. Des. 75–79 1071 (2005).

    Article  Google Scholar 

  18. D. L. Smith, K. Natesan, J.-H. Park, C. B. Reed, and R. F. Mattas, Fusion Eng. Des. 51–52 185 (2000).

    Article  Google Scholar 

  19. T. Yano, Y. Futamura, M. Imai, and K. Yoshida, J. Nucl. Mater. 440, 495 (2013).

    Article  ADS  Google Scholar 

  20. D. L. Smith, J.-H. Park, I. Lyublinski, V. Evtikhin, A. Perujo, H. Glassbrenner, T. Terai, and S. Zinkle, Fusion Eng. Des. 61–62 629 (2002).

    Article  Google Scholar 

  21. A. Sawada, A. Suzuki, T. Terai, and T. Muroga, J. Nucl. Mater. 329–333 1411 (2004).

    Article  ADS  Google Scholar 

  22. A. Sawada, A. Suzuki, and T. Terai, Fusion Eng. Des. 81, 579 (2006).

    Article  Google Scholar 

  23. T. Yano, K. Ichikawa, M. Akiyoshi, and Y. Tachi, J. Nucl. Mater. 283–287 947 (2000).

    Article  ADS  Google Scholar 

  24. A. K. Shikov and V. A. Beliakov, J. Nucl. Mater. 367–370, 1298 (2007).

    Article  ADS  Google Scholar 

  25. M. Koyama, K. Fukumoto, and H. Matsui, J. Nucl. Mater. 329–333 442 (2004).

    Article  ADS  Google Scholar 

  26. J. Chen, S. Qiu, L. Yang, Z. Xu, Y. Deng, and Y. Xu, J. Nucl. Mater. 302, 135 (2002).

    Article  ADS  Google Scholar 

  27. T. Muroga, Y. Xu, T. Nagasaka, Y. Chen, Y. Deng, and Z. Y. Xu, J. Nucl. Mater. 334, 143 (2004).

    Article  ADS  Google Scholar 

  28. T. Muroga, T. Nagasaka, A. Iiyoshi, A. Kawabata, S. Sakurai, and M. Sakata, J. Nucl. Mater. 283–287 711 (2000).

    Article  ADS  Google Scholar 

  29. R. A. Causey, R. A. Karnesky, and C. San Marchi, in Comprehensive Nuclear Materials (Elsevier, Oxford, 2012), p. 511.

    Book  Google Scholar 

  30. F. Franza, L. V. Boccaccini, A. Ciampichetti, and M. Zucchetti, Fusion Eng. Des. 88, 2444 (2013).

    Article  Google Scholar 

  31. V. D’Auria, S. Dulla, P. Ravetto, L. Savoldi, M. Utili, and R. Zanino, Fusion Eng. Des. 121, 198 (2017).

    Article  Google Scholar 

  32. B. Garcinuno, D. Rapisarda, I. Fernandez, C. Moreno, I. Palermo, and A. Ibarra, Fusion Eng. Des. 117, 226 (2017).

    Article  Google Scholar 

  33. Y. Hatano, A. Busnyuk, V. Alimov, A. I. Livshits, Y. Nakamura, and M. Matsuyama, Fusion Sci. Technol. 54, 526 (2008).

    Article  Google Scholar 

  34. A. I. Livishits, M. E. Notkin, A. A. Samartsev, A. O. Busnyuk, A. Yu. Doroshin, and V. I. Pistunovich, J. Nucl. Mater. 196, 159 (1992).

    Article  ADS  Google Scholar 

  35. R. K. Musyaev, B. S. Lebedev, A. A. Yukhimchuk, A. O. Busnyuk, A. A. Samartsev, M. E. Notkin, and A. I. Livshits, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez, No. 2, 26 (2008).

  36. Y. Nakamura, S. Sengoku, Y. Nakahara, N. Suzuki, H. Suzuki, N. Ohyabu, A. Busnyuk, M. Notkin, and A. Livshits, J. Nucl. Mater. 278, 312 (2000).

    Article  ADS  Google Scholar 

  37. V. N. Alimov, A. O. Busnyuk, M. E. Notkin, and A. I. Livshits, J. Membr. Sci. 457, 103 (2014).

    Article  Google Scholar 

  38. B. V. Kuteev and Yu. S. Shpanskiy (DEMO-FNS Team), Nucl. Fusion 57, 076039 (2017).

    Article  ADS  Google Scholar 

  39. V. Yu. Sergeev, B. V. Kuteev, A. S. Bykov, A. A. Gervash, D. A. Glazunov, P. R. Goncharov, A. Yu. Dnestrovskij, R. R. Khayrutdinov, A. V. Klishchenko, V. E. Lukash, I. V. Mazul, P. A. Molchanov, V. S. Petrov, V. A. Rozhansky, Yu. S. Shpanskiy, A. B. Sivak, V. G. Skokov, and A. V. Spitsyn, Nucl. Fusion 55, 123013 (2015).

    Article  ADS  Google Scholar 

  40. A. A. Skovoroda, V. S. Svishchov, and A. V. Spitsyn, J. Nucl. Mater. 306, 232 (2002).

    Article  ADS  Google Scholar 

  41. A. V. Golubeva, N. P. Bobyr, D. I. Cherkez, A. V. Spitsyn, M. Mayer, Yu. M. Gasparyan, V. S. Efimov, V. M. Chernov, and M. V. Leontieva-Smirnova, J. Nucl. Mater. 438, 983 (2013).

    Article  ADS  Google Scholar 

  42. A. V. Golubeva, D. I. Cherkez, A. V. Spitsyn, and S. V. Yanchenkov, Instrum. Exp. Tech. 60, 843 (2017).

    Article  Google Scholar 

  43. D. I. Cherkez, A. A. Anan’ev, A. V. Spitsyn, and A. A. Mednikov, RF Patent No. 2616927 (2017).

    Google Scholar 

  44. M. M. Potapenko, V. M. Chernov, A. K. Shikov, G. P. Vedernikov, et al., Vopr. At. Nauki Tekh., Ser.: Materialoved. Nov. Mater., No. 1 (164), 340 (2005).

  45. A. V. Spitsyn, N. P. Bobyr’, D. I. Cherkez, A. V. Golubeva, S. S. Anan’ev, O. I. Obrezkov, M. V. Atamanov, and A. N. Molchanov, RF Patent No. 2534710, Byull. Izobret., No. 34 (2014).

    Google Scholar 

  46. J. A. Thornton and D. W. Hoffman, Thin Solid Films 171, 5 (1989).

    Article  ADS  Google Scholar 

  47. A. A. Pisarev, I. V. Tsvetkov, E. D. Marenkov, and S. S. Yarko, Hydrogen Permeability through Metals (MIFI, Moscow, 2008) [in Russian].

    Google Scholar 

  48. A. Pisarev and A. Bacherov, Phys. Scr. 108, 124 (2004).

    Article  Google Scholar 

  49. A. Pisarev, V. Shestakov, R. Hayakawa, Y. Hatano, and K. Watanabe, J. Nucl. Mater. 320, 214 (2003).

    Article  ADS  Google Scholar 

  50. T. V. Kulsartov, V. P. Shestakov, I. L. Tazhibaeva, and E. A. Kenzhin, J. Nucl. Mater. 283–287 872 (2000).

    Article  ADS  Google Scholar 

  51. O. G. Romanenko, I. L. Tazhibaeva, V. P. Shestakov, A. Kh. Klepikov, Y. V. Chikhray, A. V. Golossanov, and B. N. Kolbasov, J. Nucl. Mater. 233–237 376 (1996).

    Article  ADS  Google Scholar 

  52. R. Hayakawa, Y. Hatano, K. Fukumoto, H. Matsui, and K. Watanabe, J. Nucl. Mater. 329–333 411 (2004).

    Article  ADS  Google Scholar 

  53. R. Hayakawa, Y. Hatano, K. Fujii, K. Fukumoto, H. Matsui, and K. Watanabe, J. Nucl. Mater. 307–311 580 (2002).

    Article  ADS  Google Scholar 

  54. T. Namba, H. Miyaguchi, et al., J. Nucl. Mater. 105, 318 (1982).

    Article  ADS  Google Scholar 

  55. E. D. Marenkov, Cand. Sci. (Phys. Math.) Dissertation (Moscow, 2013).

    Google Scholar 

  56. S. A. Steward, Review of Hydrogen Isotope Permeability through Materials (Lawrence Livermore Natl. Labor., Univ. California, Livermore, CA, 1983).

    Book  Google Scholar 

  57. J. Wang, Q. Li, Q.-Y. Xiang, and J.-Li. Cao, Fusion Eng. Des. 102, 94 (2016).

    Article  Google Scholar 

  58. S. K. Lee, S.-H. Yun, H. G. Joo, and S. J. Noh, Curr. Appl. Phys. 14, 1358 (2014).

    Google Scholar 

  59. F. Reiter et al., Fusion Technol. 8, 2344 (1985).

    Article  Google Scholar 

  60. G. A. Esteban, A. Perujo, K. Douglas, and L. A. Sedano, J. Nucl. Mater. 281, 34 (2000).

    Article  ADS  Google Scholar 

  61. D. Levchuk, F. Koch, H. Maier, and H. Bolt, J. Nucl. Mater. 328, 103 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Russian Foundation for Basic Research, grant no. 15-08-07625 A (deuterium permeation through vanadium membranes with coatings), and the Russian Science Foundation, grant no. 17-72-20191 (permeation through vanadium membranes under plasma irradiation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Cherkez.

Additional information

Russian Text © The Author(s), 2018, published in Voprosy Atomnoi Nauki i Tekhniki, Seriya: Termoyadernyi Sintez, 2018, Vol. 41, No. 2, pp. 41–58.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherkez, D.I., Spitsyn, A.V., Golubeva, A.V. et al. Deuterium Permeation Through Reduced Activation V-4Cr-4Ti Alloy and V-4Cr-4Ti Alloy with AlN/Al Coatings. Phys. Atom. Nuclei 82, 1010–1024 (2019). https://doi.org/10.1134/S1063778819070056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819070056

Keywords

Navigation