Skip to main content
Log in

Light Neutral Clusters in Supernova Matter

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The role of weakly bound neutral clusters, such as dineutrons and tetraneutrons, in matter of high density and high temperature is discussed. Under such conditions, which are characteristic of core-collapse supernovae, the lifetime of multineutrons may prove to be sufficiently long for them to have a pronounced effect on the formation of the chemical composition. The influence of the multineutron binding energy and other nuclear properties on the magnitude of the effect being considered is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Fischer, G. Martínez-Pinedo, M. Hempel, L. Huther, G. Röpke, S. Typel, and A. Lohs, EPJ Web Conf. 109, 06002 (2016).

    Article  Google Scholar 

  2. J. P. Kneller and G. C. McLaughlin, Phys. Rev. D 70, 043512 (2004).

    Article  ADS  Google Scholar 

  3. A. V. Yudin, M. Hempel, S. I. Blinnikov, D. K. Nadyozhin, and I. V. Panov, Mon. Not. R. Astron. Soc. 483, 5426 (2019).

    Article  ADS  Google Scholar 

  4. Ad. R. Raduta and F. Gulminelli, Nucl. Phys. A 983, 252 (2019).

    Article  ADS  Google Scholar 

  5. A. I. Baz’, V. I. Gol’danskiĭ, and Ya. B. Zel’dovich, Sov. Phys. Usp. 8, 177 (1965).

    Article  ADS  Google Scholar 

  6. Yu. E. Penionzhkevich, Phys. At. Nucl. 79, 549 (2016).

    Article  Google Scholar 

  7. Yu. E. Penionzhkevich, Vestn. Mezhd. Akad. Nauk, Rus. Sekts. 1, 43 (2015).

    Google Scholar 

  8. M. V. Zhukov, B. V. Danilin, D. V. Fedorov, J. M. Bang, I. J. Thompson, and J. S. Vaagen, Phys. Rev. 231, 151 (1993).

    Google Scholar 

  9. L. V. Grigorenko, M. S. Golovkov, S. A. Krupko, S. I. Sidorchuk, G. M. Ter-Akop’yan, A. S. Fomichev, and V. Khudoba, Phys. Usp. 59, 321 (2016).

    Article  ADS  Google Scholar 

  10. Yu. E. Penionzhkevich, Phys. Part. Nucl. 43, 452 (2012).

    Article  Google Scholar 

  11. Yu. S. Lyutostansky, V. K. Sirotkin, and I. V. Panov, Phys. Lett. B 161, 9 (1985).

    Article  ADS  Google Scholar 

  12. N. Feather, Nature (London, U.K.) 162, 213 (1948).

    Article  ADS  Google Scholar 

  13. D. N. Kundu and M. L. Pool, Phys. Rev. 73, 22 (1948).

    Article  ADS  Google Scholar 

  14. B. L. Cohen and T. H. Handley, Phys. Rev. 92, 101 (1953).

    Article  ADS  Google Scholar 

  15. K. K. Seth and B. Parker, Phys. Rev. Lett. 66, 2448 (1991).

    Article  ADS  Google Scholar 

  16. R. Alzetta, G. C. Ghirardi, and A. Rimini, Phys. Rev. 131, 1740 (1963).

    Article  ADS  Google Scholar 

  17. S. B. Borzakov, Ts. Panteleev, and A. V. Strelkov, Pis’ma Fiz. Elem. Chastits At. Yadra, No. 2, 45 (2002).

  18. F. Kobayashi and Y. Kanada-En’yo, in Proceedings of the 12th Asia Pacific Physics Conference APPC12 (2014).

  19. V. M. Bystritsky, G. N. Dudkin, S. I. Kuznetsov, V. A. Varlachev, and V. N. Padalko, Nucl. Instrum. Methods Phys. Res., Sect. A 834, 164 (2016).

    Article  ADS  Google Scholar 

  20. A. Spyrou, Z. Kohley, T. Baumann, D. Bazin, B. A. Brown, G. Christian, P. A. DeYoung, J. E. Finck, N. Frank, E. Lunderberg, S. Mosby, W. A. Peters, A. Schiller, J. K. Smith, J. Snyder, M. J. Strongman, et al., Phys. Rev. Lett. 108, 102501 (2012).

    Article  ADS  Google Scholar 

  21. K.-H. Sun, F. A. Pecjak, andA. J. Allen, Phys. Rev. 85, 942 (1952).

    Article  ADS  Google Scholar 

  22. C. A. Bertulani and V. Zelevinsky, Nature (London, U.K.) 532, 448 (2016).

    Article  ADS  Google Scholar 

  23. R. Ya. Kezerashvili, arXiv: 1608.00169; Proceedings of the APS April Meeting, January 28–31, 2017, Washington, DC (2017), Abstract J2.005.

  24. K. A. Gridnev, V. N. Tarasov, D. K. Gridnev, W. Greiner, and H. Viñas, JETP Lett. 102, 321 (2015).

    Article  ADS  Google Scholar 

  25. P. Maris, J. P. Vary, S. Gandolfi, J. Carlson and S. C. Pieper, Phys. Rev. C 87, 054318 (2013).

    Article  ADS  Google Scholar 

  26. V. A. Ageev, I. N. Vishnevskii, V. I. Gavrilyuk, V. A. Zheltonozhskii, A. P. Lashko, and N. V. Stril’chuk, Ukr. J. Phys. 31, 1771 (1986).

    Google Scholar 

  27. F. M. Marqúes et al., Phys. Rev. C 65, 044006 (2002).

    Article  ADS  Google Scholar 

  28. A. M. Shirokov, G. Papadimitriou, A. I. Mazur, I. A. Mazur, R. Roth, and J. P. Vary, Phys. Rev. Lett. 117, 182502 (2016).

    Article  ADS  Google Scholar 

  29. A. V. Belyakov, Lett. Prog. Phys. 13, 123 (2017).

    Google Scholar 

  30. K. Kisamori, S. Shimoura, H. Miya, S. Michimasa, S. Ota, M. Assie, H. Baba, T. Baba, D. Beaumel, M. Dozono, T. Fujii, N. Fukuda, S. Go, F. Hammache, E. Ideguchi, N. Inabe, et al., Phys. Rev. Lett. 116, 052501 (2016).

    Article  ADS  Google Scholar 

  31. B. G. Novatsky, S. B. Sakuta, and D. N. Stepanov, JETP Lett. 98, 656 (2014).

    Article  ADS  Google Scholar 

  32. E. Hiyama, R. Lazauskas, J. Carbonell, and M. Kamimura, Phys. Rev. C 93, 044004 (2016).

    Article  ADS  Google Scholar 

  33. D. K. Nadyozhin and A. V. Yudin, Astron. Lett. 30, 634 (2004).

    Article  ADS  Google Scholar 

  34. S. I. Blinnikov, I. V. Panov, M. A. Rudzsky, and K. Sumiyoshi, Astron. Astrophys. 535, A37 (2011).

    Article  ADS  Google Scholar 

  35. C. A. Engelbrecht and J. R. Engelbrecht, Ann. Phys. (N. Y.) 207, 1 (1991).

    Article  ADS  Google Scholar 

  36. A. V. Yudin, Cand. Sci. (Phys. Math.) Dissertation (Inst. Theor. Exp. Phys., Moscow, 2009).

    Google Scholar 

  37. M. Hempel and J. Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010).

    Article  ADS  Google Scholar 

  38. H.-Th. Janka, K. Langanke, A. Marek, G. Martínez-Pinedo, and B. Müller, Phys. Rep. 442, 38 (2007).

    Article  ADS  Google Scholar 

  39. H.-Th. Janka, Ann. Rev. Nucl. Part. Sci. 62, 407 (2012).

    Article  ADS  Google Scholar 

  40. J. A. Pons, S. Reddy, M. Prakash, J. M. Lattimer, and J. A. Miralles, Astrophys. J. 513, 780 (1999).

    Article  ADS  Google Scholar 

  41. G. Martínez-Pinedo, T. Fischer, A. Lohs, and L. Huther, Phys. Rev. Lett. 109, 251104 (2012).

    Article  ADS  Google Scholar 

  42. T. Fischer, S. C. Whitehouse, A. Mezzacappa, F.-K. Thielemann, and M. Liebendörfer, Astron. Astrophys. 517, A80 (2010).

    Article  Google Scholar 

  43. L. F. Roberts, S. Reddy, and G. Shen, Phys. Rev. C 86, 065803 (2012).

    Article  ADS  Google Scholar 

  44. M. Hempel, T. Fischer, J. Schaffner-Bielich, and M. Liebendörfer, Astrophys. J. 748, 70 (2012).

    Article  ADS  Google Scholar 

  45. T. Fischer, M. Hempel, I. Sagert, Y. Suwa, and J. Schaffner-Bielich, Eur. Phys. J. A 50, 46 (2014).

    Article  ADS  Google Scholar 

  46. H. Witala and W. Glöckle, Phys. Rev. C 85, 064003 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to D. K. Nadyozhin and S. I. Blinnikov for their participation in discussions of the results of this study and their interest in it and to A. G. Doroshkevich for enlightening comments.

Funding

This work was supported by Russian Foundation for Basic Research (project no. 18-29-21019mk).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Panov or A. V. Yudin.

Additional information

Russian Text © The Author (s), 2019, published in Yadernaya Fizika, 2019, Vol. 82, No. 5, pp. 403–410.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, I.V., Yudin, A.V. Light Neutral Clusters in Supernova Matter. Phys. Atom. Nuclei 82, 483–490 (2019). https://doi.org/10.1134/S1063778819040161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819040161

Navigation