Skip to main content
Log in

Form Factor for a Two-Fermion Composite System: Case of Equal Masses and Vector Current

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

New expressions for components of the form factor for a composite system of two equal-mass relativistic fermions were obtained for the vector-current case. The respective consideration was performed within the relativistic quasipotential approach based on the covariant Hamiltonian formulation of quantum field theory via a transition to the three-dimensional relativistic configuration representation for the case of interaction between two equal-mass particles of spin 1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Körner and M. Kuroda, Phys. Rev. D 16, 2165 (1977).

    Article  ADS  Google Scholar 

  2. S. Dubnicka, Nuovo Cim. A 103, 1417(1990).

    Article  ADS  Google Scholar 

  3. O. D. Dal’karov, JETP Lett. 28, 170 (1978).

    ADS  Google Scholar 

  4. O. D. Dalkarov and K. V. Protasov, Nucl. Phys. A 504, 845 (1989); Mod. Phys. Lett. A 4, 1203 (1989)

    Article  ADS  Google Scholar 

  5. O. D. Dal’karov and K. V. Protasov, JETP Lett. 49, 273 (1989).

    ADS  Google Scholar 

  6. O. D. Dalkarov, P. A. Khakhulin, and A. Yu. Voronin, arXiv: 0906.0266v1 [nucl-th].

  7. V. A. Matveev, R. M. Muradyan, and A. N. Tavkhelidze, JINR Preprint No. E2-3498 (JINR, Dubna, 1967); JINR Preprint No. P2-3900 (JINR, Dubna, 1968).

  8. V. R. Garsevanishvili, A. N. Kvinikhidze, V. A. Matveev, A. N. Tavkhelidze, and R. N. Faustov, Theor. Math. Phys. 23, 533 (1975).

    Article  Google Scholar 

  9. A. L. Khelashvili, JINR Preprint P2-8750 (JINR, Dubna, 1976).

  10. R. N. Faustov, Theor. Math. Phys. 3, 478 (1970).

    Article  Google Scholar 

  11. R. N. Faustov, Ann. Phys. (N.Y.) 78, 176 (1973).

    Article  ADS  Google Scholar 

  12. A. A. Logunov and A. N. Tavkhelidze, Nuovo Cim. 29, 380 (1963).

    Article  ADS  Google Scholar 

  13. S. I. Bilen’kaya, N. B. Skachkov, and I. L. Solovtsov, Sov. J. Nucl. Phys. 26, 556 (1977).

    Google Scholar 

  14. V. G. Kadyshevsky, Nucl. Phys. B 6, 125 (1968).

    Article  ADS  Google Scholar 

  15. V. G. Kadyshevskiĭ, Sov. Phys. JETP 19, 443, 597 (1964); Sov. Phys. Dokl. 10, 46 (1965).

    Google Scholar 

  16. V. G. Kadyshevsky, R. M. Mir-Kasimov, and N. B. Skachkov, Nuovo Cim. A 55, 233 (1968).

    Article  ADS  Google Scholar 

  17. N. B. Skachkov and I. L. Solovtsov, JINR Preprint No. E2-11678 (JINR, Dubna, 1978); Theor. Math. Phys. 41, 977 (1979).

  18. N. B. Skachkov and I. L. Solovtsov, JINR Preprint No. E2-11727 (JINR, Dubna, 1978); Sov. J. Nucl. Phys. 30, 562 (1979).

  19. N. B. Skachkov and I. L. Solovtsov, Theor. Math. Phys. 43, 494 (1980).

    Article  Google Scholar 

  20. Yu. D. Chernichenko, Phys. At. Nucl. 77, 229 (2014).

    Article  Google Scholar 

  21. Yu. D. Chernichenko, Phys. At. Nucl. 78, 201 (2015).

    Article  Google Scholar 

  22. V. G. Kadyshevskiĭ, M. D. Mateev, and R. M. Mir-Kasimov, Sov. J. Nucl. Phys. 11, 388 (1970).

    Google Scholar 

  23. V. G. Kadyshevskiĭ, R. M. Mir-Kasimov, and N. B. Skachkov, Sov. J. Part. Nucl. 2 (3), 69 (1972).

    Google Scholar 

  24. Yu. D. Chernichenko, Phys. At. Nucl. 81, 360 (2018).

    Article  Google Scholar 

  25. V. G. Kadyshevsky and M. D. Mateev, Nuovo Cim. A 55, 275 (1968).

    Article  ADS  Google Scholar 

  26. Yu. D. Chernichenko, Phys. At. Nucl. 80, 707 (2017).

    Article  Google Scholar 

  27. N. B. Skachkov and I. L. Solovtsov, JINR Preprint No. E2-81–760 (JINR, Dubna, 1981); Theor. Math. Phys. 54, 116 (1983).

  28. V. A. Matveev, R. M. Muradyan, and A. N. Tavkhelidze, Lett. Nuovo Cim. 5, 907 (1972); 7, 719(1973); Theor. Math. Phys. 40, 778 (1979).

    Article  Google Scholar 

  29. S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 31, 1153 (1973).

    Article  ADS  Google Scholar 

  30. K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38 (2014).

  31. SELEX Colab. (I. Eschrich et al.), Phys. Lett. B 522, 233 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I am grateful to O.P. Solovtsova, V.V. Andreev, A.E. Dorokhov, Yu.A. Kurochkin, and I.S. Satsunkevich for their interest in this study, an enlightening discussion on its results, and valuable comments.

Funding

This work was supported by the Program of International Cooperation between Republic of Belarus and Joint Institute for Nuclear Research (JINR, Dubna) and by the State Research Program for the Period Spanning 2016 and 2020 Convergence-2020 (Microphysics, Plasma, and Universe section).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu.D. Chernichenko.

Additional information

Russian Text © The Author(s), 2019, published in Yadernaya Fizika, 2019, Vol. 82, No. 4, pp. 287–296.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernichenko, Y. Form Factor for a Two-Fermion Composite System: Case of Equal Masses and Vector Current. Phys. Atom. Nuclei 82, 334–342 (2019). https://doi.org/10.1134/S1063778819040069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819040069

Navigation