Skip to main content
Log in

Study of Hadrons Produced in Proton—Carbon Interactions at 120 GeV/c Using Hadron-Production Models

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Double differential yield of π±, K±, protons, and antiprotons as a function of laboratory momentum is presented using hadron production models. This study is done in several polar angle intervals from 0 < θ < 420 mrad for π± mesons and 0 < θ < 360 mrad for K± mesons, protons, and antiprotons. The study is carried out for p + C interactions at 120 GeV/c. For simulation, three hadron-production models: EPOS-LHC, EPOS 1.99, and QGSJETII-04 are used. Since no experimental data at 120 GeV/c is available yet, therefore, the models’ predictions are compared with the measurements of NA61/SHINE experiments at 31 GeV/c. It is found that the QGSJETII-04 model gives high peak value, for π± mesons, in the polar angle interval of 20–40 mrad, while in the range of 40–240 mrad, EPOS-LHC shows higher yield than EPOS 1.99 and QGSJETII-04 models, whereas all show higher yield than the experimental data. For π± mesons, in all angular intervals, at high momentum values, all the three models are consistent and surprisingly give the same yield as that of the experimental data. For K± mesons, QGSJETII-04 shows higher peak values at all polar angles ranging from 0 to 360 mrad as compared to that of EPOS 1.99 and EPOS-LHC models, whereas all models give higher yield at low angular intervals than the experimental data and the same yield at high angular intervals. The models demonstrate similar yields for protons at all angles but underestimate the experimental data at low angular intervals and provide the same yield at high angular intervals. The QGSJETII-04 model presents higher yields of antiprotons in comparison to the EPOS 1.99 and EPOS-LHC models, for almost all angular intervals. Generally, at higher angular range, i.e., from 240 to 420 mrad, particularly at high momentum, all the three models show similar results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. E. Kopp, Phys. Rept. 439, 101 (2007).

    Article  ADS  Google Scholar 

  2. C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).

    Article  ADS  Google Scholar 

  3. K. Abe et al. (T2K Collab.), Phys. Rev. D 87, 019902 (2013).

    Article  ADS  Google Scholar 

  4. A. E. Hervé (for the NA61/SHINE Collab.), PoS(ICRC2015) 330 (2016).

  5. T. Pierog and K. Werner, Phys. Rev. Lett. 101, 171101 (2008).

    Article  ADS  Google Scholar 

  6. M. G. Catanesi et al. (HARP Collab.), CERN-SPSC/99-35, 15 November 1999.

  7. R. Raja, Nucl. Phys. B Proc. Suppl. 175–176, 17 (2008).

    Article  Google Scholar 

  8. S. Afanasiev, T. Alber, H. Appelshäuser, J. Bächler, D. Barna, L. S. Barnby, J. Bartke, R. A. Barton, L. Betev, H. Bialkowska, F. Bieser, A. Billmeier, C. O. Blyth, R. Bock, C. Bormann, J. Bracinik, et al., Nucl.Instrum.Methods A 430, 210 (1999).

    Article  ADS  Google Scholar 

  9. B. A. Popov, Nucl. Phys. B Proc. Suppl. 235–236, 135 (2013).

    Article  Google Scholar 

  10. B. A. Popov, EPJ Web Conf. 99, 020022 (2015).

    Article  Google Scholar 

  11. N. Abgrall et al. (for the benefit of the NA61/SHINE Collab.), JINST 9, P06005 (2014).

  12. http://home.cern/about/accelerators/super-proton-synchrotron.

  13. N. Abgrall et al. (The NA61/SHINE Collab.), Phys. Rev. C 84, 034604 (2011).

    Article  ADS  Google Scholar 

  14. N. Abgrall et al. (The NA61/SHINE Collab.), Phys. Rev. C 85, 035210 (2012).

    Article  ADS  Google Scholar 

  15. N. Abgrall et al. (The NA61/SHINE Collab.), Nucl. Instrum. Methods A 701, 99 (2013).

    Article  ADS  Google Scholar 

  16. N. Abgrall, CERN-THESIS-2011-165 (Université de Genève, 2011).

    Google Scholar 

  17. L. Zambelli CERN-THESIS-2013-290 (Université Paris Diderot, 2013).

    Google Scholar 

  18. N. Abgrall et al. (The NA61/SHINE Collab.), Eur. Phys. J. C 76, 84 (2016).

    Article  ADS  Google Scholar 

  19. N. Abgrall et al. (The NA61/SHINE Collab.), Eur. Phys. J. C 76, 617 (2016).

    Article  ADS  Google Scholar 

  20. A. Hasler, CERN-THESIS-2015-103 (Université de Genève, 2015).

    Google Scholar 

  21. M. Pavin, CERN-THESIS-2017-233 (University of Paris VI, 2017).

    Google Scholar 

  22. N. Abgrall et al. (The NA61/SHINE Collab.), Report from the NA61/SHINE Experiment at the CERN SPS, Status Report to the Proposal SPSC-P-330, 10 October, 2013.

  23. S. Ullah, Y. Ali, M. Ajaz, U. Tabassam, and Q. Ali, Int. J. Mod. Phys. A 33, 1850108 (2018); S. Ullah, M. Ajaz, and Y. Ali, EPL 123, 31001 (2018).

    Article  ADS  Google Scholar 

  24. M. Ajaz, S. Ullah, Y. Ali, and H. Younis, Mod. Phys. Lett. A 33, 1850038 (2018).

    Article  ADS  Google Scholar 

  25. M. Ajaz, Y. Ali, S. Ullah, Q. Ali, and U. Tabassam, Mod. Phys. Lett. A 33, 1850079 (2018).

    Article  ADS  Google Scholar 

  26. K. Werner, F-.M. Liu, and T. Pierog, Phys. Rev. C 74, 044902 (2006).

    Article  ADS  Google Scholar 

  27. T. Pierog, Iu. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner, Phys. Rev. C 92, 034906 (2015).

    Article  ADS  Google Scholar 

  28. S. Ostapchenko, Phys. Rev. D 83, 014018 (2011).

    Article  ADS  Google Scholar 

  29. M. Ajaz, M. K. Suleymanov, K. H. Khan, and A. Zaman, Int. J. Mod. Phys. E 21, 1250095 (2012).

    Article  ADS  Google Scholar 

  30. M. Ajaz, M. K. Suleymanov, K. H. Khan, A. Zaman, H. Younis, and A. Rahman, Mod. Phys. Lett. A 28, 1350175 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Abdul Wali Khan University Mardan, and COMSATS University, Park Road, Islamabad Pakistan as they provide us suitable platform and all possible facilities to perform the simulations and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ajaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajaz, M., Ali, Y., Ullah, S. et al. Study of Hadrons Produced in Proton—Carbon Interactions at 120 GeV/c Using Hadron-Production Models. Phys. Atom. Nuclei 82, 291–298 (2019). https://doi.org/10.1134/S1063778819030037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819030037

Navigation