Skip to main content
Log in

CP Properties of Leptons within the Mirror Mechanism

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2021

This article has been updated

Abstract

The formation of the quark and lepton mass matrices through intermediate states of heavy mirror fermions is able to reproduce basic observable qualitative properties of weak-mixing matrices—specifically, the Cabibbo—Kobayashi—Maskawa (CKM) matrix and the Pontecorvo—Maki—Nakagawa-Sakata (PMNS) matrix. The reproduction in question includes the hierarchy of the CKM matrix elements and a general form of the PMNS matrix, including the smallness of the neutrino mixing angle θ13 and leads to extremely small neutrino masses. For leptons, these properties arise only if Standard Model neutrinos are Dirac particles and if the spectrum of their generations has an inverse character. In such a lepton system, the mechanism of spontaneous mirror-symmetry violation and the observed mass hierarchy of charged leptons (e, μ, and τ) specify the structure of the PMNS matrix and make it possible to estimate the complex-valuedness of its elements—that is, to assess the CP properties of leptons. In this case, the PMNS matrix does not involve Majorana phases, whereas its Dirac phase δCP corresponds to ∣ sin δCP ∣ that is substantially smaller than unity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. M. Fukugita and T. Yamagida, Phys. Lett. B 174, 45 (1986).

    Article  ADS  Google Scholar 

  2. C. Hagedorn, R. N. Mohapatra, E. Molinaro, C. C. Nishi, and S. T. Petcov, J. Mod. Phys. A 33, 1842006 (2018; arXiv: 1711.02866 [hep-ph]).

    Article  ADS  Google Scholar 

  3. T2K Collab (K. Abe et al.), Phys. Rev. D 91, 072010 (2015; arXiv: 1502.01550 [hep-ph]).

    Article  ADS  Google Scholar 

  4. J. Elevant and T. Schwetz, arXiv: 1506.07685 [hep-ph]; D. V. Forero and P. Huber, arXiv: 1601.03736 [hep-ph]).

  5. S. Pascoli, CERN Courier 56 (6), 34 (2016).

    Google Scholar 

  6. I. T. Dyatlov, Phys. At. Nucl. 77, 733 (2014; arXiv: 1312.4339 [hep-ph]).

    Article  Google Scholar 

  7. I. T. Dyatlov, Phys. At. Nucl. 78, 956 (2015; arXiv: 1509.07280 [hep-ph]).

    Article  Google Scholar 

  8. I. T. Dyatlov, Phys. At. Nucl. 78, 485 (2015; Yad. Fiz. 81, 406 (2018) (Corrigenda); arXiv: 1502.01501 [hep-ph]).

    Article  Google Scholar 

  9. I. T. Dyatlov, Phys. At. Nucl. 80, 679 (2017; arXiv: 1703.00722 [hep-ph]).

    Article  Google Scholar 

  10. L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).

    Article  ADS  Google Scholar 

  11. Particle Data Group (M. Takabashi et al.), Phys. Rev. D 98, 030001 (2018).

    Google Scholar 

  12. Daya-BayCollab. (F. P. An et al.), Phys. Rev. Lett. 108, 171803 (2012; RENO Collab. (J. K. Ahn et al.), Phys. Rev. Lett. 108, 191802 (2012; Double Chooz Collab. (Y. Abe et al.), Phys. Rev. D 86, 052008 (2012).

    Article  Google Scholar 

  13. R. N. Mohapatra and A. Yu. Smirnov, hep-ph/0603118).

  14. T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).

    Article  ADS  Google Scholar 

  15. J. Bergström, M. C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, J. High Energy Phys. 1509, 200 (2015; arXiv: 1507.04366 [hep-ph]).

    Article  ADS  Google Scholar 

  16. I. T. Dyatlov, Phys. At. Nucl. 80, 275 (2017; arXiv: 1611.05635 [hep-ph]).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. Dyatlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyatlov, I.T. CP Properties of Leptons within the Mirror Mechanism. Phys. Atom. Nuclei 82, 144–152 (2019). https://doi.org/10.1134/S1063778819020066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778819020066

Navigation