Skip to main content
Log in

Multiplicity Distributions of the Charged Particles at the Maximum of Electromagnetic Showers Initiated by 5–1000 GeV Electrons in Fe, W, and Pb

  • Interaction of Plasma, Particle Beams, and Radiation with Matter
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Charged particles multiplicity distributions at the maximum of electromagnetic showers initiated by 5–1000 GeV electrons in Fe, W, and Pb were calculated using GEANT4. It is shown that they are well fitted by the inverse sum of two exponents and the energy dependence of the average multiplicity follows power law with the power of ~0.95 for all materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Tyapkin, Nucl. Instrum. Methods Phys. Res. 85, 277 (1970).

    Article  ADS  Google Scholar 

  2. D. Muller, Phys. Rev. D: Part. Fields 5, 2677 (1972).

    Article  ADS  Google Scholar 

  3. Ts. A. Amatuni, S. P. Denisov, R. N. Krasnokutsky, et al., Nucl. Instrum. Methods Phys. Res. 203, 179 (1982).

    Article  ADS  Google Scholar 

  4. Ts. A. Amatuni, Yu. M. Antipov, S. P. Denisov, et al., Nucl. Instrum. Methods Phys. Res. 203, 183 (1982).

    Article  ADS  Google Scholar 

  5. C. S. Zhang, M. Shibata, K. Kasahara, and T. Yuda, Nucl. Instrum. Methods Phys. Res., Sect. A 283, 78 (1989).

    Article  ADS  Google Scholar 

  6. J. del Peso and E. Ros, Nucl. Instrum. Methods Phys. Res., Sect. A 306, 485 (1991).

    Article  ADS  Google Scholar 

  7. G. Apollinari, N. D. Giokaris, K. Goulianos, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 324, 475 (1993).

    Article  ADS  Google Scholar 

  8. D. Acosta, B. Bylsma, L. S. Durkin, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 354, 296 (1995).

    Article  ADS  Google Scholar 

  9. S. J. Alvsvaag, O. A. Maeland, A. Klovning, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 360, 219 (1995).

    Article  ADS  Google Scholar 

  10. K. Byrum, J. Dawson, L. Nodulman, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 364, 144 (1995).

    Article  ADS  Google Scholar 

  11. S. A. Akimenko, V. I. Belousov, B. V. Chujko, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 365, 92 (1995).

    Article  ADS  Google Scholar 

  12. J. Grunhaus, S. Kananov, and C. Milststene, Nucl. Instrum. Methods Phys. Res., Sect. A 354, 368 (1995).

    Article  ADS  Google Scholar 

  13. Y. H. Chang, A. E. Chen, S. R. Hou, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 388, 135 (1997).

    Article  ADS  Google Scholar 

  14. K. Kawagoe, Y. Sugimoto, A. Takeuchi, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 487, 275 (2002).

    Article  ADS  Google Scholar 

  15. A. Balanda, M. Jaskula, M. Kajetanowicz, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 531, 445 (2004).

    Article  ADS  Google Scholar 

  16. S. Itoh, T. Takeshita, Y. Fujii, F. Kajino, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 589, 370 (2008).

    Article  ADS  Google Scholar 

  17. A. Ronzhin, S. Los, E. Ramberg, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 795, 288 (2015).

    Article  ADS  Google Scholar 

  18. M. Antonello, M. Caccia, M. Cascella, et al., arXiv:1805.03251v1 [physics.ins-det] (2018); Nucl. Instrum. Methods Phys. Res., Sect. A, accepted for publication in NIM A.

  19. V. V. Brekhovskikh and V. V. Gorev, Izv. Vyssh. Uchebn. Zaved., Povolzhsk. Reg., Fiz.-Mat. Nauki, No. 3 (31), 134 (2014).

    Google Scholar 

  20. http://cern.ch/geant4.

  21. S. Incerti, V. Ivanchenko, and M. Novak, J. Istrum. 13, C02054 (2018).

    Article  Google Scholar 

  22. http://pdg.lbl.gov.

  23. S. P. Denisov and V. N. Goryachev, IHEP Preprint No. 2018-10 (Inst. High Energy Phys., 2018).

    Google Scholar 

  24. E. Longo and I. Sestili, Nucl. Instrum. Methods Phys. Res. 128, 283 (1975).

    Article  ADS  Google Scholar 

  25. G. Grindhammer, M. Rudowicz, and S. Peters, Nucl. Instrum. Methods Phys. Res., Sect. A 290, 469 (1990).

    Article  ADS  Google Scholar 

  26. Ts. A. Amatuni, Yu. M. Antipov, S. P. Denisov, and A. I. Petrukhin, Prib. Tekh. Eksp. 3, 33 (1983); IHEP Preprint No. 82–28 (Inst. High Energy Phys., Serpukhov, 1982).

    Google Scholar 

  27. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Nauka, Moscow, 1971; Academic, San Diego, CA, 2000).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Denisov.

Additional information

Published in Russian in Yadernaya Fizika i Inzhiniring, 2018, Vol. 9, No. 3.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisov, S.P., Goryachev, V.N. Multiplicity Distributions of the Charged Particles at the Maximum of Electromagnetic Showers Initiated by 5–1000 GeV Electrons in Fe, W, and Pb. Phys. Atom. Nuclei 81, 1488–1493 (2018). https://doi.org/10.1134/S1063778818110236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778818110236

Keywords

Navigation