Skip to main content
Log in

Radial Compression of a Compact Toroid Caused by Induction of a Paramagnetic Field

  • Nuclear Fusion
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Partially ionized and weakly magnetized plasma (typical for MHD generators) flows along the outer spherical chamber, and is placed around the inner chamber where an field reversed configuration (FRC) is injected. Inside the outer chamber, the azimuthal Er × B drift induces a paramagnetic field Bp, with an intensity of tens of Teslas. The intensity of the Bp field is controlled by the inwardly directed radial electric field Er. Inside the inner chamber the Bp field becomes anti-parallel to the external magnetic field Bem. After establishing the magnetic mirror configuration of magnetic field intensity Bp ~ 20T (in the mid-plane), the FRC (target plasma) is injected into the magnetic mirror with the help of a magnetic wave generator. Inside the magnetic mirror (inner chamber), the rotating magnetic field (RMF) induces the azimuthal current jω inside the FRC. This current gives the magnetic field Bj an intensity of dozens of Teslas. This field is antiparallel to the Bp field. Interaction between magnetic fields, Bp and Bj, causes radial compression of the injected FRC. As a result of the magnetic compression, the product of density and the energy confinement time amounts to 1.72 × 1019 s/m3, which is close to the level expected for the working reactor (~1020 s/m3). Detailed analyses reveal that the compressed plasma (compact toroid) is very stable, the kinetic stability condition is fulfilled (S*/ε≅0.28), and the ratio α is very low: (~8.6×10-2). This makes the most destructive rotational modes, n=1 and n=2, harmless.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Ryzhkov, Fusion Sci. Technol. 47 (1T), 342 (2005).

    Article  Google Scholar 

  2. V. V. Kuzenov, Phys. At. Nucl. 80, 1683 (2017). doi 10.1134/S1063778817090101

    Article  Google Scholar 

  3. Kuzenov V.V., Yad. Fiz. Inzhin. 7, 342 (2016). doi 10.1134/S2079562916040102

    Google Scholar 

  4. A. Yu. Chirkov, S. V. Ryzhkov, P. A. Bagryansky, and A. V. Anikeev, Fusion Sci. Technol. 59 (1T), 39 (2011).

    Article  Google Scholar 

  5. S. V. Ryzhkov, Fusion Sci. Technol. 55 (2T), 157 (2009).

    Article  Google Scholar 

  6. A. G. Mozgovoy, I. V. Romadanov, and S. V. Ryzhkov, Phys. Plasmas 21, 022501 (2014).

    Article  ADS  Google Scholar 

  7. M. Yamada, AIP Conf. Proc. 1721, 020005 (2016).

    Article  Google Scholar 

  8. D. Twaróg, IEEE Trans. Plasma Sci. 41, 280 (2013).

    Article  ADS  Google Scholar 

  9. S. V. Ryzhkov, A. Yu. Chirkov, and A. A. Ivanov, Fusion Sci. Technol. 63 (1T), 135 (2013).

    Article  Google Scholar 

  10. S. V. Ryzhkov, Sustain. Cities Soc. 14, 313 (2015).

    Article  Google Scholar 

  11. A. Godeke, D. Cheng, D. R. Dietderich, P. Ferracin, S. O. Prestemon, G. Sabbi, and R. M. Scanlan, IEEE Trans. Appl. Supercond. 17, 1149 (2007).

    Article  ADS  Google Scholar 

  12. E. Bertolini, M. Buzio, A. Kaye, J. R. Last, P. Miele, P. Noll, S. Papastergiou, V. Riccardo, G. Sannazzaro, M. Sjoholm, and R. Walton, JET-R(99)10 (2000).

  13. V. Labinac, N. Erceg, and D. Kotnik-Karuza, Am. J. Phys. 74, 621 (2006).

    Article  ADS  Google Scholar 

  14. D. Kirtley, J. Slough, M. Pfaff, and C. Pihl, in Proceedings of the Joint Army Navy NASA Air Force Conference, 2011. http://msnwllc.com/Papers/EMPT_JANNAF_2011.pdf.

    Google Scholar 

  15. A. L. Hoffman, Nucl. Fusion 40, 1523 (2000).

    Article  ADS  Google Scholar 

  16. H. Y. Guo, A. L. Hoffman, R. D. Brooks, A. M. Peter, Z. A. Pietrzyk, S. J. Tobin, and G. R. Votroubek, Phys. Plasmas 9, 185 (2002).

    Article  ADS  Google Scholar 

  17. D. C. Quimby, A. L. Hoffman, and G. C. Vlases, Nucl. Fusion 21, 553 (1981).

    Article  Google Scholar 

  18. V. F. Ermolovich, A. V. Ivanovskii, A. P. Orlov, and V. D. Selemir, Tech. Phys. 45, 1241 (2000).

    Article  Google Scholar 

  19. S. V. Ryzhkov, Plasma Phys. Rep 37, 1075 (2011).

    Article  ADS  Google Scholar 

  20. J. T. Slough, G. Votroubek, and C. Phil, Nucl. Fusion 51, 1 (2011).

    Article  Google Scholar 

  21. C. E. Seyler, Phys. Fluids 22, 2324 (1979).

    Article  ADS  Google Scholar 

  22. A. M. Peter, PhD Thesis, UMI no. 3091055 (Univ. of Washington, 2003).

  23. H. Ji, M. Yamada, R. Kulsrud, N. Pomphrey, and H. Himura, Phys. Plasmas 5, 3685 (1998).

    Article  ADS  Google Scholar 

  24. S. A. Cohen and R. D. Milroy, Phys. Plasmas 7, 2539 (2000).

    Article  ADS  Google Scholar 

  25. R. J. Goldston and P. H. Rutherford, Introduction to Plasma Physics (Taylor Francis, New York, London, 1995), p. 91.

    Book  Google Scholar 

  26. S. V. Ryzhkov, Fusion Sci. Technol. 51 (2T), 190 (2007).

    Article  Google Scholar 

  27. V. D. Dhareppagol and A. Saurav, Int. J. Adv. Electr. Electron. Eng. 2, 101 (2013).

    Google Scholar 

  28. I. Romadanov, A. Smolyakov, Y. Raitses, I. Kaganovich, T. Tian, and S. Ryzhkov, Phys. Plasmas 23, 122111 (2016).

    Article  ADS  Google Scholar 

  29. M. Tuszewski, Nucl. Fusion 28, 2033 (1988).

    Article  Google Scholar 

  30. M. R. Gilbert, S. L. Dudarev, S. Zheng, L. W. Packer, and J.-Ch. Sublet, Nucl. Fusion 52, 083019 (2012).

    Article  ADS  Google Scholar 

  31. V. I. Khvesyuk, S. V. Ryzhkov, J. F. Santarius, G. A. Emmert, C. N. Nguyen, L. C. Steinhauer, Fusion Technol. 39 (1T), 410 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Twarog.

Additional information

Published in Russian in Yadernaya Fizika i Inzhiniring, 2017, Vol. 8, No. 5, pp. 399–412.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Twarog, D. Radial Compression of a Compact Toroid Caused by Induction of a Paramagnetic Field. Phys. Atom. Nuclei 81, 1391–1403 (2018). https://doi.org/10.1134/S1063778818100186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778818100186

Keywords

Navigation