Skip to main content
Log in

Radiation-Induced Densification Model of Uranium-Gadolinium Fuel

  • Mathematical Modeling in Nuclear Technologies
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

In this paper, we have developed a model of radiation-induced densification of uranium-gadolinium fuel. The fuel is established to be in the brittle state under irradiation in the volume of uranium-gadolinium fuel pellet containing a burnable neutron absorber and in the plastic state out of this volume. The plastic zone volume increases during burnup of the neutron absorber. The relative change in a pellet volume or length of a fuel rod for uranium-gadolinium fuel is shown to be lower than that for uranium oxide nuclear fuel having the same microstructure and irradiated under the same conditions (the neutron flux).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Freshley, D. W. Brite, and J. L. Daniel, J. Nucl. Mater. 62, 138 (1976).

    Article  ADS  Google Scholar 

  2. G. J. Small, J. Nucl. Mater. 148, 302 (1987).

    Article  ADS  Google Scholar 

  3. G. Mayer, H. Assmann, and W. Dörr, J. Nucl. Mater. 153, 213 (1988).

    Article  ADS  Google Scholar 

  4. B. Yu. Volkov, W. Wiesenack, V. V. Yakovlev, E. P. Ryazantsev, A. K. Panyushkin, A. V. Ivanov, O. V. Kryukov, P. I. Lavrenyuk, and Yu. V. Pimenov, At. Energy 113, 171 (2013).

    Article  Google Scholar 

  5. B. Yu. Volkov, H. Jenssen, E. P. Ryazantsev, V. V. Yakovlev, V. V. Kalygin, D. V. Markov, Yu. V. Pimenov, and A. V. Ivanov, At. Energy 114, 404 (2013).

    Article  Google Scholar 

  6. Yu. N. Devyatko, V. V. Novikov, V. I. Kuznetsov, and O. V. Khomyakov, Yad. Fiz. Inzhin. 6 (3–4), 139 (2015) [in Russian].

    Google Scholar 

  7. A. Shcheglov, B. Volkov, and V. Proselkov, in Proceedings of the 10th International Conference on WWER Fuel Performance. Modelling and Experimental Support, Sept. 7–14, 2013, Sandanski, Bulgaria, p. 359.

    Google Scholar 

  8. B. Volkov, T. Tverberg, and M. McGrath, in Proceedings of the Water Reactor Fuel Performance Meeting WRFPM 2014, Sendai, Japan, Sept. 14–17, 2014.

    Google Scholar 

  9. T. Tverberg, in Proceedings of the IAEA Technical Meeting on Fuel Rod Instrumentation and In-Pile Measurement Techniques, Halden, Sept. 3–5, 2007. https://www.ife.no/en/publications/2007/nusp/publication. 2007-10-23.6420112393/at_download/Attachmentfile.

    Google Scholar 

  10. A. V. Fedotov, E. N. Mikheev, A. V. Lysikov, and V. V. Novikov, At. Energy 113, 429 (2013).

    Article  Google Scholar 

  11. Yu. N. Devyatko, V. V. Novikov, and O. V. Khomyakov, Yad. Fiz. Inzhin. 8 (4), 319 (2017) [in Russian].

    Google Scholar 

  12. Evaluated Nuclear Data File (ENDF). https://wwwnds. iaea.org/exfor/endf.htm.

  13. J. F. Ziegler, http://www.srim.org.

  14. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

    Google Scholar 

  15. The Manual. Tables of Physical Values, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976) [in Russian].

  16. S. Fukushima, T. Ohmichi, A. Maeda, and H. Watanabe, J. Nucl. Mater. 105, 201 (1982).

    Article  ADS  Google Scholar 

  17. R. K. Willardson, J. W. Moody, and H. Goering, J. Inorg. Nucl. Chem. 6, 19 (1958).

    Article  Google Scholar 

  18. Yu. N. Devyatko, V. V. Novikov, O. V. Khomyakov, and D. A. Chulkin, Inorg. Mater.: Appl. Res. 7, 409 (2016).

    Article  Google Scholar 

  19. V. L. Bonch-Bruevich and S. G. Kalashnikov, The Physics of Semiconductors (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  20. S. G. Popov, V. N. Proselkov, and V. A. Lysenko, At. Energy 110, 221 (2011).

    Article  Google Scholar 

  21. N. Ishikawa, N. Okubo, and T. Taguchi, Nanotecnology 6, 355701 (2015).

    Article  Google Scholar 

  22. K. Une, J. Nucl. Sci. Technol. 23, 1020 (1986).

    Article  Google Scholar 

  23. W. Breitung and K. O. Reil, Nucl. Sci. Eng. 105, 205 (1990).

    Article  Google Scholar 

  24. M. Amaya, K. Une, and M. Hirai, J. Nucl. Technol. 41, 108 (2004).

    Article  Google Scholar 

  25. V. Roque, B. Cros, D. Baron, et al., J. Nucl. Mater. 277, 211 (2000).

    Article  ADS  Google Scholar 

  26. A. Padel and Ch. de Novion, J. Nucl. Mater. 33, 40 (1969).

    Article  ADS  Google Scholar 

  27. O. D. Slagle and R. P. Nelson, J. Nucl. Mater. 40, 349 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Khomyakov.

Additional information

Original Russian Text © Yu.N. Devyatko, V.V. Novikov, O.V. Khomyakov, 2017, published in Yadernaya Fizika i Inzhiniring, 2017, Vol. 8, No. 5, pp. 445–456.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devyatko, Y.N., Novikov, V.V. & Khomyakov, O.V. Radiation-Induced Densification Model of Uranium-Gadolinium Fuel. Phys. Atom. Nuclei 81, 1301–1311 (2018). https://doi.org/10.1134/S1063778818090077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778818090077

Keywords

Navigation