Skip to main content
Log in

Detactability of Dark Matter Subhalos by Means of the GAMMA-400 Telescope

  • Elementary Particles and Fields
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The potential of the planned GAMMA-400 gamma-ray telescope for detecting subhalos of mass between 106M and 109M in the Milky Way Galaxy that consist of annihilating dark matter in the form of weakly interacting massive particles (WIMPs) is studied. The inner structure of dark matter subhalos and their distribution in the Milky Way Galaxy are obtained on the basis of respective theoretical models. Our present analysis shows that the expected gamma-ray flux from subhalos depends strongly on the WIMP mass and on the subhalo concentration, but that it depends less strongly on the subhalo mass. Optimistically, a flux of 10 to 100 ph per year in the energy range above 100 MeV can be expected from the closest and most massive subhalos, which can therefore be thought to be detectable sources for GAMMA-400. Because of the smallness of fluxes, however, only via a joint analysis of future GAMMA-400 data and data from other telescopes would it become possible to resolve the inner structure of the subhalos. Also, the recent subhalo candidates 3FGL J2212.5+0703 and J1924.8–1034 are considered within our model. Our conclusion is that these sources hardly belong to the subhalo population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Particle Dark Matter: Observations, Models and Searches, Ed. byG. Bertone (CambridgeUniv. Press, Cambridge, 2010).

  2. E. Charles, M. Sánchez-Conde, B. Anderson, R. Caputo, A. Cuoco, M. di Mauro, A. Drlica-Wagner, G. A. Gomez-Vargas, M.Meyer, L. Tibaldo, M.Wood, G. Zaharijas, S. Zimmer, M. Ajello, A. Albert, L. Baldini, et al., Phys.Rep. 636, 1 (2016); arXiv: 1605.02016.

    Article  MathSciNet  ADS  Google Scholar 

  3. F. Calore, V. de Romeri, M. Di Mauro, F. Donato, and F. Marinacci, Phys. Rev. D 96, 063009 (2017); arXiv: 1611.03503.

    Article  ADS  Google Scholar 

  4. F. Acero, M. Ackermann, M. Ajello, A. Albert, W. B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, A. Belfiore, R. Bellazzini, E. Bissaldi, R. D. Bland ford, E. D. Bloom, J. R. Bogart, et al., Astrophys. J. Suppl. Ser. 218, 23 (2015); arXiv: 1501.02003.

    Article  ADS  Google Scholar 

  5. B. Bertoni, D. Hooper, and T. Linden, J. Cosmol. Astropart. Phys. 5, 049 (2016); arXiv: 1602.07303.

    Article  ADS  Google Scholar 

  6. Y.-P. Wang, K.-K. Duan, P.-X. Ma, Y.-F. Liang, Z.-Q.Shen, S. Li, C. Yue, Q. Yuan, J.-J. Zang, Y.-Z. Fan, and J. Chang, Phys. Rev. D 94, 123002 (2016); arXiv: 1611.05135.

    Article  ADS  Google Scholar 

  7. Z.-Q. Xia, K.-K. Duan, S. Li, Y.-F. Liang, Z.-Q. Shen, C. Yue, Y.-P. Wang, Q. Yuan, Y.-Z. Fan, J. Wu, and J. Chang, Phys. Rev.D95, 102001 (2017); arXiv: 1611.05565.

  8. T.-L. Chou, D. Tanoglidis, and D. Hooper, arXiv: 1709.08562.

  9. A. M. Galper, O. Adriani, R. L. Aptekar, I. V. Arkhangelskaja, A. I. Arkhangelskiy, M. Boezio, V. Bonvicini, K. A. Boyarchuk, Yu. V. Gusakov, M. O. Farber, M. I. Fradkin, V. A. Kachanov, V. A. Kaplin, M. D. Kheymits, A. A. Leonov, F. Longo, et al., Adv. Space Res. 51, 297 (2013); arXiv: 1201.2490.

    Article  ADS  Google Scholar 

  10. N. P. Topchiev, A. M. Galper, V. Bonvicini, O. Adriani, I. V. Arkhangelskaja, A. I. Arkhangelskiy, A. V. Bakaldin, S. G. Bobkov, M. Boezio, O. D. Dalkarov, A. E. Egorov, M. S. Gorbunov, Y. V. Gusakov, B. I. Hnatyk, V. V. Kadilin, V. A. Kaplin, et al., EPJ Web. Conf. 145, 06001 (2017).

    Article  Google Scholar 

  11. A. De Angelis, V. Tatischeff, M. Tavani, U. Oberlack, I. Grenier, L. Hanlon, R. Walter, A. Argan, P. von Ballmoos, A. Bulgarelli, I. Donnarumma, M. Hernanz, I. Kuvvetli, M. Pearce, A. Zdziarski, A. Aboudan, et al., Exp. Astron. 44, 25 (2017); arXiv: 1611.02232.

    Article  ADS  Google Scholar 

  12. G. D. Martinez, Mon. Not. R. Astron. Soc. 451, 2524 (2015); arXiv: 1309.2641.

    Article  ADS  Google Scholar 

  13. A. Geringer-Sameth, S. M. Koushiappas, and M. Walker, Astrophys. J. 801, 74 (2015), 1408.0002.

    Article  ADS  Google Scholar 

  14. https://doi.org/www.marcocirelli.net/PPPC4DMID.html.

  15. M. Cirelli, G. Corcella, A. Hektor, G. Hütsi, M. Kadastik, P. Panci, M. Raidal, F. Sala, and A. Strumia, J. Cosmol. Astropart. Phys. 3, 051 (2011); arXiv: 1012.4515.

    Article  ADS  Google Scholar 

  16. P. Ciafaloni, D. Comelli, A. Riotto, F. Sala, A. Strumia, and A. Urbano, J. Cosmol. Astropart. Phys. 3, 019 (2011); arXiv:1009.0224.

    Article  ADS  Google Scholar 

  17. Á. Moliné, M. A. Sánchez-Conde, S. Palomares-Ruiz, and F. Prada, Mon. Not. R. Astron. Soc. 466, 4974 (2017); arXiv:1603.04057.

    ADS  Google Scholar 

  18. M. Ackermann, A. Albert, B. Anderson, W. B. Atwood, L. Baldini, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, E. Bissaldi, R. D. Bland ford, E. D. Bloom, R. Bonino, E. Bottacini, T. J. Brand t, J. Bregeon, et al., Phys. Rev. Lett. 115, 231301 (2015); arXiv:1503.02641.

    Article  ADS  Google Scholar 

  19. https://doi.org/fermi.gsfc.nasa.gov/ssc/data/access/.

  20. A. Albert, B. Anderson, K. Bechtol, A. Drlica-Wagner, M. Meyer, M. Sánchez-Conde, L. Strigari, M. Wood, T. M. C. Abbott, F. B. Abdalla, A. Benoit-Lé vy, G. M. Bernstein, R. A. Bernstein, E. Bertin, D. Brooks, D. L. Burke, et al., Astrophys. J. 834, 110 (2017); arXiv: 1611.03184.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Egorov.

Additional information

Original Russian Text © A.E. Egorov, A.M. Galper, N.P. Topchiev, A.A. Leonov, S.I. Suchkov, M.D. Kheymits, Yu.T. Yurkin, 2018, published in Yadernaya Fizika, 2018, Vol. 81, No. 3, pp. 360–365.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, A.E., Galper, A.M., Topchiev, N.P. et al. Detactability of Dark Matter Subhalos by Means of the GAMMA-400 Telescope. Phys. Atom. Nuclei 81, 373–378 (2018). https://doi.org/10.1134/S1063778818030110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778818030110

Navigation