Adjustment of Non-linear Interaction Parameters for Relativistic Mean Field Approach by Using Artificial Neural Networks

Abstract

The relativistic mean field (RMF) model with a small number of adjusted parameters has been used successfully in the last thirty years for predictions of various ground-state nuclear properties of nuclei. In this model, Dirac and Klein–Gordon like equations obtained from application of variation principle on phenomenological Lagrangian density are solved iteratively for calculations of nuclear properties of nuclei. For this purpose, parameters such as masses of considered mesons, nucleon–meson coupling constants, and self-couplings of mesons are needed and they are fitted from experimental data. Some parameter sets for RMF model introduced to correct predictions of nuclear properties of nuclei cover nuclidic chart. Besides Artificial Neural Network (ANN) method is used successfully in many field of science as in nuclear physics. ANN is known as a very powerful tool that are used when standard techniques fail to estimate the correlation between the variables. In the present study, ANN method has been employed to check its understanding capability of relations between RMF model parameters and their predictions on the ground-state binding energies of some spherical nuclei. Understanding capability of ANN method for these relations of considered nuclei has been found well. Based on this success, new non-linear parameter set for RMF model called DEFNE by us have been produced by using ANN method. Furthermore, predictions of RMF model with DEFNE parameter set for ground-state binding energies and charge radii of nuclei cover nuclidic chart have been found as in agreement with the available experimental data.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).

    ADS  Article  Google Scholar 

  2. 2.

    J. Dechargé and D. Gogny, Phys. Rev. C 21, 1568 (1980).

    ADS  Article  Google Scholar 

  3. 3.

    J. Boguta and A. R. Bodmer, Nucl. Phys.A 292, 413 (1977).

    ADS  Article  Google Scholar 

  4. 4.

    P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).

    ADS  Article  Google Scholar 

  5. 5.

    G. A. Lalazissis, S. Raman, and P. Ring, At. Data Nucl. Data Tables 71, 1 (1999).

    ADS  Article  Google Scholar 

  6. 6.

    D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).

    ADS  Article  Google Scholar 

  7. 7.

    J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006).

    ADS  Article  Google Scholar 

  8. 8.

    J. Piekarewicz, Phys. Rev. C 76, 064310 (2007).

    ADS  Article  Google Scholar 

  9. 9.

    A. H. Yilmaz and T. Bayram, J. Korean Phys. Soc. 59, 3329 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    T. Bayram and A. H. Yilmaz, Mod. Phys. Lett. A 28, 1350068 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    T. Bayram and S. Akkoyun, Phys. Scripta 87, 065201 (2013).

    ADS  Article  Google Scholar 

  12. 12.

    P. Ring, Y. K. Gambhir, and G. A. Lalazissis, Comput. Phys. Commun. 105, 77 (1997).

    ADS  Article  Google Scholar 

  13. 13.

    T. Nikšić, N. Paar, D. Vretenar, and P. Ring, Comput. Phys. Commun. 185, 1808 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    G. A. Lalazissis, S. Karatzikos, R. Fossion, D. Pena Artega, A. V. Afanasjev, and P. Ring, Phys. Lett. B 671, 36 (2009).

    ADS  Article  Google Scholar 

  15. 15.

    M. E. Medhat, Ann. Nucl. Energy 45, 73 (2012).

    Article  Google Scholar 

  16. 16.

    S. Athanassopoulos, E. Mavrommatis, K. A. Gernoth, and J.W. Clark, Nucl. Phys. A 743, 222 (2004).

    ADS  Article  Google Scholar 

  17. 17.

    T. Bayram, S. Akkoyun, and S. O. Kara, Ann. Nucl. Energy 63, 172 (2014).

    Article  Google Scholar 

  18. 18.

    K. M. Graczyk and C. Juszczak, Phys. Rev. C 90, 054334 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    R. Utama, J. Piekarewicz, and H. B. Prosper, Phys. Rev. C 93, 014311 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    K.M. Graczyk, Phys. Rev. C 84, 034314 (2011).

    ADS  Article  Google Scholar 

  21. 21.

    C. David, M. Freslier, and J. Aichelin, Phys. Rev. C 51, 1453 (1995).

    ADS  Article  Google Scholar 

  22. 22.

    S. A. Bass, A. Bischoff, J. A. Maruhn, H. Stocker, and W. Greiner, Phys. Rev. C 53, 2358 (1996).

    ADS  Article  Google Scholar 

  23. 23.

    F. Haddad, K. Hagel, J. Li, N. Mdeiwayeh, J. B. Natowitz, R. Wada, B. Xiao, C. David, M. Freslier, and J. Aichelin, Phys. Rev. C 55, 1371 (1997).

    ADS  Article  Google Scholar 

  24. 24.

    N. Costiris, E. Mavrommatis, K. A. Gernoth, and J.W. Clark, nucl-th/0701096v1.

  25. 25.

    S. Akkoyun and T. Bayram, Int. J. Mod. Phys. E 23, 1450064 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    S. Akkoyun, T. Bayram, S. O. Kara, and A. Sinan, J. Phys. G 40, 055106 (2013).

    ADS  Article  Google Scholar 

  27. 27.

    R. Utama, W.-C. Chen, and J. Piekarewicz, J. Phys. G 43, 114002 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    K.M. Graczyk, Phys. Rev. C 88, 065205 (2013).

    ADS  Article  Google Scholar 

  29. 29.

    G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55, 540 (1997).

    ADS  Article  Google Scholar 

  30. 30.

    Y. K. Gambhir and A. Bhagwat, Phys. Part. Nucl. 37, 194 (2006).

    Article  Google Scholar 

  31. 31.

    S. Haykin, Neural Networks: a Comprehensive Foundation (Englewood Cliffs, Prentice-Hall, New Jersey, 1999).

    Google Scholar 

  32. 32.

    G. Cybenko, Math. Control Signals Syst. 2, 303 (1989).

    MathSciNet  Article  Google Scholar 

  33. 33.

    K. Levenberg, Quart. Appl.Math. 2, 164 (1944).

    MathSciNet  Article  Google Scholar 

  34. 34.

    D.W. Marquardt, J. Soc. Indust. Appl.Math. 11, 431 (1963).

    MathSciNet  Article  Google Scholar 

  35. 35.

    M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, Chin. Phys. C 36, 1603 (2012).

    Article  Google Scholar 

  36. 36.

    T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 78, 034318 (2008).

    ADS  Article  Google Scholar 

  37. 37.

    G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 71, 024312 (2005).

    ADS  Article  Google Scholar 

  38. 38.

    M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, S. Pittel, and D. J. Dean, Phys. Rev. C 68, 054312 (2003).

    ADS  Article  Google Scholar 

  39. 39.

    P. Moller, J. R. Nix, and K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).

    ADS  Article  Google Scholar 

  40. 40.

    I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Bayram.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bayram, T., Akkoyun, S. & Şentürk, Ş. Adjustment of Non-linear Interaction Parameters for Relativistic Mean Field Approach by Using Artificial Neural Networks. Phys. Atom. Nuclei 81, 288–295 (2018). https://doi.org/10.1134/S1063778818030043

Download citation