Skip to main content
Log in

Collapse of Rotating Stellar Cores in Single and Binary Systems: From SN 1987A to Coalescing Black Holes

  • Elementary Particles and Fields Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The observed special features of SN 1987A may indicate that this supernova has a quickly rotating progenitor formed as the result of the evolution of a close binary system. The possibility for the formation of quickly rotating collapsing cores of massive stars and the frequency of their formation are studied here within the standard scenario of the evolution of massive binary systems. Possible evolutionary channels of the production of binary black holes whose parameters (masses and spins) are determined from the LIGO observation of gravitational-wave signals (GW150914, LTV151012, GW151226, and GW170104) are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Podsiadlowski, Publ. Astron. Soc. Pacif. 104, 717 (1992).

    Article  ADS  Google Scholar 

  2. P. Podsiadlowski, P. C. Joss, and J. J. L. Hsu, Astrophys. J. 391, 246 (1992).

    Article  ADS  Google Scholar 

  3. A. Menon and A. Heger, arXiv: 1703.04918.

  4. J. M. Centrella, K. C. B. New, L. L. Lowe, and J. D. Brown, Astrophys. J. Lett. 550, L193 (2001); astro-ph/0010574.

    Article  ADS  Google Scholar 

  5. L. Baiotti, R. de Pietri, G. M. Manca, and L. Rezzolla, Phys. Rev. D 75, 044023 (2007), astro-ph/0609473.

    Article  ADS  Google Scholar 

  6. S. Chandrasekhar, Ellipsoidal Figures of Equilibrium (Yale Univ. Press, New Haven, 1969).

    MATH  Google Scholar 

  7. R. H. Durisen and J. E. Tohline, in Protostars and Planets II, Ed. by D. C. Black and M. S. Matthews (UA Press, Tucson, 1985), p.534.

  8. V. S. Imshennik, Astron. Lett. 18, 194 (1992).

    Google Scholar 

  9. V. S. Imshennik and D. K. Nadezhin, Astron. Lett. 18, 79 (1992).

    Google Scholar 

  10. V. S. Imshennik, Phys. Usp. 53, 1081 (2010).

    Article  ADS  Google Scholar 

  11. V. S. Imshennik and D. V. Popov, Astron. Lett. 24, 206 (1998).

    ADS  Google Scholar 

  12. V. S. Imshennik, Astron. Lett. 34, 375 (2008).

    Article  ADS  Google Scholar 

  13. M. Colpi and I. Wasserman, Astrophys. J. 581, 1271 (2002); astro-ph/0207327.

    Article  ADS  Google Scholar 

  14. G. V. Lipunova, E. S. Gorbovskoy, A. I. Bogomazov, and V. M. Lipunov, Mon. Not. R. Astron. Soc. 397, 1695 (2009); arXiv: 0903.3169.

    Article  ADS  Google Scholar 

  15. M. B. Davies, A. King, S. Rosswog, and G. Wynn, Astrophys. J. Lett. 579, L63 (2002); astroph/ 0204358.

    Article  ADS  Google Scholar 

  16. K. Belczynski, V. Kalogera, and T. Bulik, Astrophys. J. 572, 407 (2002); astro-ph/0111452.

    Article  ADS  Google Scholar 

  17. M. Dominik, K. Belczynski, C. Fryer, D. E. Holz, E. Berti, T. Bulik, I. Mandel, and R. O’Shaughnessy, Astrophys. J. 759, 52 (2012); arXiv: 1202.4901.

    Article  ADS  Google Scholar 

  18. K. A. Postnov and L. R. Yungelson, Living Rev. Relativ. 17, 3 (2014); arXiv: 1403.4754.

    Article  ADS  Google Scholar 

  19. J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams, R. Adhikari, P. Ajith, B. Allen, E. A. Ceron, R. S. Amin, S. B. Anderson, W. G. Anderson, F. Antonucci, S. Aoudia, et al., Class. Quantum Grav. 27, 173001 (2010); arXiv: 1003.2480.

    Article  ADS  Google Scholar 

  20. S. E. Woosley, A. Heger, and T. A. Weaver, Rev. Mod. Phys. 74, 1015 (2002).

    Article  ADS  Google Scholar 

  21. M. Spera, M. Mapelli, and A. Bressan, Mon. Not. R. Astron. Soc. 451, 4086 (2015); arXiv: 1505.05201.

    Article  ADS  Google Scholar 

  22. M. Dominik, K. Belczynski, C. Fryer, D. E. Holz, E. Berti, T. Bulik, I. Mandel, and R. O’Shaughnessy, Astrophys. J. 779, 72 (2013); arXiv: 1308.1546.

    Article  ADS  Google Scholar 

  23. B. P. Abbott et al. (LIGO Sci. Collab. and Virgo Collab.), Phys. Rev. Lett. 116, 061102 (2016); arXiv: 1602.03837.

    Article  ADS  MathSciNet  Google Scholar 

  24. B. P. Abbott et al., Phys. Rev. X 6, 041015 (2016); arXiv: 1606.04856.

    Google Scholar 

  25. D. Kushnir, M. Zaldarriaga, J. A. Kollmeier, and R. Waldman, Mon. Not. R. Astron. Soc. 462, 844 (2016); arXiv: 1605.03839.

    Article  ADS  Google Scholar 

  26. K. Hotokezaka and T. Piran, Astrophys. J. 842, 111 (2017); arXiv: 1702.03952.

    Article  ADS  Google Scholar 

  27. C. L. Rodriguez, S. Chatterjee, and F. A. Rasio, Phys. Rev. D 93, 084029 (2016); arXiv: 1602.02444.

    Article  ADS  Google Scholar 

  28. C. Talbot and E. Thrane, Phys. Rev. D 96, 023012 (2017); arXiv: 1704.08370.

    Article  ADS  Google Scholar 

  29. S. Allain, Astron. Astrophys. 333, 629 (1998).

    ADS  Google Scholar 

  30. H. C. Spruit, Astron. Astrophys. 381, 923 (2002); astro-ph/0108207.

    Article  ADS  Google Scholar 

  31. J. Braithwaite and H. C. Spruit, arXiv: 1510.03198.

  32. J.-P. Zahn, S. Talon, and J. Matias, Astron. Astrophys. 322, 320 (1997); astro-ph/9611189.

    ADS  Google Scholar 

  33. J. R. Hurley, C. A. Tout, and O. R. Pols, Mon.Not.R. Astron. Soc. 329, 897 (2002); astro-ph/0201220.

    Article  ADS  Google Scholar 

  34. H. Sana, S. E. de Mink, A. de Koter, N. Langer, C. J. Evans, M. Gieles, E. Gosset, R. G. Izzard, J.-B. le Bouquin, and F. R. N. Schneider, Science 337, 444 (2012); arXiv: 1207.6397.

    Article  ADS  Google Scholar 

  35. H. Spruit and E. S. Phinney, Nature 393, 139 (1998); astro-ph/9803201.

    Article  ADS  Google Scholar 

  36. S. B. Popov and R. Turolla, Astrophys. Space Sci. 341, 457 (2012); arXiv: 1204.0632.

    Article  ADS  Google Scholar 

  37. A. Noutsos, D. H. F. M. Schnitzeler, E. F. Keane, M. Kramer, and S. Johnston, Mon. Not. R. Astron. Soc. 430, 2281 (2013); arXiv: 1301.1265.

    Article  ADS  Google Scholar 

  38. M. C. Miller and J. M. Miller, Phys. Rep. 548, 1 (2015); arXiv: 1408.4145.

    Article  ADS  MathSciNet  Google Scholar 

  39. J. Fuller, M. Cantiello, D. Lecoanet, and E. Quataert, Astrophys. J. 810, 101 (2015); arXiv: 1502.07779.

    Article  ADS  Google Scholar 

  40. B. Paxton, P. Marchant, J. Schwab, E. B. Bauer, L. Bildsten, M. Cantiello, L. Dessart, R. Farmer, H. Hu, N. Langer, R. H. D. Townsend, D. M. Townsley, and F. X. Timmes, Astrophys. J. Suppl. Ser. 220, 15 (2015); arXiv: 1506.03146.

    Article  ADS  Google Scholar 

  41. V. S. Imshennik and V. O. Molokanov, Astron. Lett. 35, 799 (2009).

    Article  ADS  Google Scholar 

  42. J. R. Hurley, O. R. Pols, and C. A. Tout, Mon. Not. R. Astron. Soc. 315, 543 (2000); astro-ph/0001295.

    Article  ADS  Google Scholar 

  43. R. O’Shaughnessy, D. Gerosa, and D. Wysocki, arXiv: 1704.03879.

  44. M. Zevin, C. Pankow, C. L. Rodriguez, L. Sampson, E. Chase, V. Kalogera, and F. A. Rasio, arXiv: 1704.07379.

  45. T. Kinugawa, K. Inayoshi, K. Hotokezaka, D. Nakauchi, and T. Nakamura, Mon. Not. R. Astron. Soc. 442, 2963 (2014); arXiv: 1402.6672.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Postnov.

Additional information

Original Russian Text © K.A. Postnov, A.G. Kuranov, 2018, published in Yadernaya Fizika, 2018, Vol. 81, No. 1, pp. 132–142.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Postnov, K.A., Kuranov, A.G. Collapse of Rotating Stellar Cores in Single and Binary Systems: From SN 1987A to Coalescing Black Holes. Phys. Atom. Nuclei 81, 146–156 (2018). https://doi.org/10.1134/S1063778818010179

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778818010179

Navigation