Physics of Atomic Nuclei

, Volume 81, Issue 1, pp 51–61 | Cite as

Mass Spectrum of Mesons and Their Leptonic Decay Widths within the Relativistic Quasipotential Approach

Elementary Particles and Fields Theory
  • 1 Downloads

Abstract

New relativistic semiclassical conditions and leptonic decay widths are obtained within quantum chromodynamics for nonsingular confining quasipotentials and funnel-type potentials (instantoninteraction approximation). The respective analysis is performed within a fully covariant quasipotential approach in quantum field theory. This approach is formulated in the relativistic configuration representation for the case of interaction between two relativistic spinless particles of arbitrary mass.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Barbieri, R. Kögerler, Z. Kunszt, and R. Gatto, Nucl. Phys. B 105, 125 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    R. McClary and N. Byers, Phys. Rev. D 28, 1692 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    E. Etim and L. Schülke, Nuovo Cimento A 77, 347 (1983).ADSCrossRefGoogle Scholar
  4. 4.
    B. Durand and L. Durand, Phys. Rev. D 30, 1904 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    V. A. Matveev, B. V. Struminskii, and A. N. Tavkhelidze, JINR Preprint No. R-2524 (Joint Inst. Nucl. Res., Dubna, 1965).Google Scholar
  6. 6.
    R. van Royen and V. F. Weisskopf, Nuovo Cimento A 50, 617 (1967).ADSCrossRefGoogle Scholar
  7. 7.
    R. Barbieri, R. Gatto, R. Kögerler, and Z. Kunszt, Phys. Lett. B 57, 455 (1975).ADSCrossRefGoogle Scholar
  8. 8.
    C. Quigg and J. L. Rosner, Phys. Rev. D 17, 2364 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    J. S. Bell and P. Pasupathy, Phys. Lett. B 83, 389 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    J. S. Bell and J. Pasupathy, Z. Phys. C 2, 183 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    N. Fröman and P. O. Fröman, J. Phys. Fr. 42, 1491 (1981).MathSciNetCrossRefGoogle Scholar
  12. 12.
    B. Durand and L. Durand, Phys. Rev. D 25, 2312 (1982).ADSCrossRefGoogle Scholar
  13. 13.
    B. Durand and L. Durand, Phys. Lett. B 113, 338 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    E. A. Tainov, Z. Phys. C 10, 87 (1981).ADSCrossRefGoogle Scholar
  15. 15.
    A. A. Logunov and A. N. Tavkhelidze, Nuovo Cimento 29, 380 (1963).CrossRefGoogle Scholar
  16. 16.
    V. G. Kadyshevsky, Nucl. Phys. B 6, 125 (1968).ADSCrossRefGoogle Scholar
  17. 17.
    V. G. Kadyshevsky and M. D. Mateev, Nuovo Cimento A 55, 275 (1968).ADSCrossRefGoogle Scholar
  18. 18.
    V. G. Kadyshevskiĭ, Sov. Phys. JETP 19, 443, 597 (1964); Sov. Phys. Dokl. 10, 46 (1965).Google Scholar
  19. 19.
    V. G. Kadyshevsky, R. M. Mir-Kasimov, and N. B. Skachkov, Nuovo Cimento A 55, 233 (1968).ADSCrossRefGoogle Scholar
  20. 20.
    V. G. Kadyshevskiĭ, M. D. Mateev, and R. M. Mir-Kasimov, Sov. J. Nucl. Phys. 11, 388 (1970).Google Scholar
  21. 21.
    V. G. Kadyshevskiĭ, R. M. Mir-Kasimov, and N. B. Skachkov, Sov. J. Part. Nucl. 2 (3), 69 (1972).Google Scholar
  22. 22.
    N. B. Skachkov and I. L. Solovtsov, Sov. J. Nucl. Phys. 31, 686 (1980).Google Scholar
  23. 23.
    A. V. Sidorov and N. B. Skachkov, Theor. Math. Phys. 46, 141 (1981)CrossRefGoogle Scholar
  24. 23a.
    JINR Preprint No. R2-80-45 (Joint Inst. Nucl. Res., Dubna, 1980)Google Scholar
  25. 23b.
    V. I. Savrin, A. V. Sidorov, and N. B. Skachkov, Hadron. J. 4, 1642 (1981).Google Scholar
  26. 24.
    D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Lett. B 635, 93 (2006).ADSCrossRefGoogle Scholar
  27. 25.
    A. P. Martynenko and R. N. Faustov, Theor. Math. Phys. 64, 765 (1985); Theor. Math. Phys. 66, 264 (1986).CrossRefGoogle Scholar
  28. 26.
    V. I. Savrin and N. B. Skachkov, Lett. Nuovo Cimento 29, 363 (1980).CrossRefGoogle Scholar
  29. 27.
    Yu. D. Chernichenko, Izv. NAN Belarusi, Ser. Fiz.-Mat. Nauk, No. 4, 81 (2009).Google Scholar
  30. 28.
    O. P. Solovtsova and Yu. D. Chernichenko, Phys. At. Nucl. 73, 1612 (2010).CrossRefGoogle Scholar
  31. 29.
    O. P. Solovtsova and Yu. D. Chernichenko, Theor. Math. Phys. 166, 194 (2011).CrossRefGoogle Scholar
  32. 30.
    Yu. D. Chernichenko, Relativistic Quasipotential Approach in Scattering Problems (Izd. Tsentr UO GGTU im. P.O. Sukhogo, Gomel’, 2011), p. 237 [in Russian].Google Scholar
  33. 31.
    A. H. Hoang, Phys. Rev. D 56, 7276 (1997).ADSCrossRefGoogle Scholar
  34. 32.
    J.-H. Yoon and Ch.-Y. Wong, Phys. Rev. C 61, 044905 (2000); J. Phys. G 31, 149 (2005).ADSCrossRefGoogle Scholar
  35. 33.
    A. B. Arbuzov, Nuovo Cimento A 107, 1263 (1994).ADSCrossRefGoogle Scholar
  36. 34.
    Yu. D. Chernichenko and O. P. Solovtsova, in Proceedings of the 10th International School-Seminar The Actual Problems of Microworld Physics, Aug. 1–12, 2011, Gomel, Belarus, JINR Preprint No. E1, 2-2013-23 (Joint Inst. Nucl. Res., Dubna, 2013), p.61.Google Scholar
  37. 35.
    B. Durand and L. Durand, Phys. Rev. D 28, 396 (1983).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.International Center for Advanced StudiesSukhoi State Technical University of GomelGomelRepublic of Belarus

Personalised recommendations