Advertisement

Physics of Atomic Nuclei

, Volume 81, Issue 1, pp 128–138 | Cite as

Supernova-Explosion Mechanism Involving Neutrinos

  • V. M. Chechetkin
  • A. G. Aksenov
Elementary Particles and Fields Theory
  • 11 Downloads

Abstract

A major part of the energy released upon the gravitational collapse of massive-star cores is carried away by neutrinos. Neutrinos play a crucial role in collapsing supernovae (SNe). At the present time, mathematical models of core-collapse SNe are based on multidimensional gas dynamics and thermonuclear reactions, whereas the neutrino transport is frequently treated in simplified way. An accurate analysis of neutrinos in a spherically symmetric gravitational collapse is performed on the basis of Boltzmann kinetic equations including all weak-interaction reactions with exact quantum-mechanical matrix elements. The role of multidimensional effects is studied bymeans of multidimensional gas dynamics allowing for the neutrino transport via diffusion treated by employing flux limiters. The possibility of largescale convection, which is of interest both from the point of view of explaining a type II supernova (SN) and from the point of view of implementing an experiment aimed at detecting possible energetic (≳10 MeV) neutrinos from an SN, is discussed. Thermonuclear burning leads to the explosion of a type I SN. A hot central region and the subsequent large-scale convection may also play an important role in the SN mechanism. If neutrinos and convection play a key role for a type II SN, then, in order to explain gamma radiation from product radioactive elements, convection is of importance in the case of SNe belonging to both types. In addition, convection may be important for bright type I SNe. Original methods are presented for multidimensional gas dynamics involving thermonuclear burning and for multitemperature gas dynamics involving radiative transfer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Baade and F. Zwicky, Proc. Natl. Acad. Sci. U.S.A. 20, 254 (1934).ADSCrossRefGoogle Scholar
  2. 2.
    W. Baade and F. Zwicky, Proc. Natl. Acad. Sci. U.S.A. 20, 259 (1934).ADSCrossRefGoogle Scholar
  3. 3.
    H.-T. Janka, Ann. Rev. Nucl. Part. Sci. 62, 407 (2012); arXiv: 1206.2503.ADSCrossRefGoogle Scholar
  4. 4.
    S. J. Smartt, Ann. Rev. Astron. Astrophys. 47, 63 (2009); arXiv: 0908.0700.ADSCrossRefGoogle Scholar
  5. 5.
    S. A. Colgate and R. H. White, Astrophys. J. 143, 626 (1966).ADSCrossRefGoogle Scholar
  6. 6.
    H. Bethe and R. Peierls, Nature 133, 532 (1934).ADSCrossRefGoogle Scholar
  7. 7.
    G. Gamow and M. Schoenberg, Phys. Rev. 59, 539 (1941).ADSCrossRefGoogle Scholar
  8. 8.
    D. K. Nadezhin and V. M. Chechetkin, Sov. Astron. 13, 213 (1969).ADSGoogle Scholar
  9. 9.
    W. A. Fowler and F. Hoyle, Astrophys. J. Suppl. 9, 201 (1964).ADSCrossRefGoogle Scholar
  10. 10.
    A. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Hüdepohl, and S. Chakraborty, Riv. Nuovo Cimento 39, 1 (2016); arXiv: 1508.00785.Google Scholar
  11. 11.
    V. S. Imshennik and D. K. Nadezhin, Sov. Sci. Rev., Ser. E: Astrophys. Space Phys. 7, 75 (1989).Google Scholar
  12. 12.
    H. A. Bethe, Rev. Mod. Phys. 62, 801 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    H.-T. Janka, K. Langanke, A. Marek, G. Martínez-Pinedo, and B. Müller, Phys. Rep. 442, 38 (2007); astro-ph/0612072.ADSCrossRefGoogle Scholar
  14. 14.
    D. Arnett, Can. J. Phys. 45, 1621 (1967).ADSCrossRefGoogle Scholar
  15. 15.
    V. S. Imshennik and D. K. Nadezhin, Sov. Phys. JETP 36, 821 (1973).ADSGoogle Scholar
  16. 16.
    D. K. Nadyozhin, Astrophys. Space Sci. 49, 399 (1977).ADSCrossRefGoogle Scholar
  17. 17.
    Neutron Stars 1: Equation of State and Structure, Vol. 326 of Astrophysics and Space Science Library, Ed. by P. Haensel, A. Y. Potekhin, and D. G. Yakovlev (Springer, New York, 2007).Google Scholar
  18. 18.
    S.W. Bruenn, Astrophys. J. Suppl. 58, 771 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    M. L. Alme and J. R. Wilson, Astrophys. J. 186, 1015 (1973).ADSCrossRefGoogle Scholar
  20. 20.
    L. Dessart, A. Burrows, E. Livne, and C. D. Ott, Astrophys. J. 673, L43 (2008), arXiv: 0710.5789.ADSCrossRefGoogle Scholar
  21. 21.
    F. D. Swesty and E. S. Myra, Astrophys. J. Suppl. 181, 1 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    B. Müller, H.-T. Janka, and H. Dimmelmeier, Astrophys. J. Suppl. 189, 104 (2010), ArXiv: 1001.4841.ADSCrossRefGoogle Scholar
  23. 23.
    A. Mezzacappa and S.W. Bruenn, Astrophys. J. 405, 637 (1993).ADSCrossRefGoogle Scholar
  24. 24.
    A. Mezzacappa and S.W. Bruenn, Astrophys. J. 405, 669 (1993).ADSCrossRefGoogle Scholar
  25. 25.
    A. Mezzacappa and S.W. Bruenn, Astrophys. J. 410, 740 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    A. Mezzacappa, M. Liebendörfer, O. E. Messer, W. R. Hix, F.-K. Thielemann, and S.W. Bruenn, Phys. Rev. Lett. 86, 1935 (2001); astro-ph/0005366.ADSCrossRefGoogle Scholar
  27. 27.
    E. J. Lentz, A. Mezzacappa, O. E. B. Messer, M. Liebendörfer, W. R. Hix, and S. W. Bruenn, Astrophys. J. 747, 73 (2012); arXiv: 1112.3595.ADSCrossRefGoogle Scholar
  28. 28.
    M. Herant, W. Benz, W. R. Hix, C. L. Fryer, and S. A. Colgate, Astrophys. J. 435, 339 (1994), astroph/ 9404024.ADSCrossRefGoogle Scholar
  29. 29.
    A. Burrows, J. Hayes, and B. A. Fryxell, Astrophys. J. 450, 830 (1995); astro-ph/9506061.ADSCrossRefGoogle Scholar
  30. 30.
    J. W. Murphy and C. Meakin, Astrophys. J. 742, 74 (2011); arXiv: 1106.5496.ADSCrossRefGoogle Scholar
  31. 31.
    J. C. Dolence, A. Burrows, and W. Zhang, Astrophys. J. 800, 10 (2015); arXiv: 1403.6115.ADSCrossRefGoogle Scholar
  32. 32.
    S. M. Couch and C. D. Ott, Astrophys. J. 778, L7 (2013); arXiv: 1309.2632.ADSCrossRefGoogle Scholar
  33. 33.
    A. Wongwathanarat, E. Müller, and H.-T. Janka, Astron. Astrophys. 577, A48 (2015); arXiv: 1409.5431.ADSCrossRefGoogle Scholar
  34. 34.
    S. M. Couch and C. D. Ott, Astrophys. J. 799, 5 (2015); arXiv: 1408.1399.ADSCrossRefGoogle Scholar
  35. 35.
    D. Radice, C. D. Ott, E. Abdikamalov, S. M. Couch, R. Haas, and E. Schnetter, Astrophys. J. 820, 76 (2016); arXiv: 1510.05022.ADSCrossRefGoogle Scholar
  36. 36.
    V.M. Chechetkin, S. D. Ustyugov, A. A. Gorbunov, and V. I. Polezhaev, Astron. Lett. 23, 30 (1997).ADSGoogle Scholar
  37. 37.
    V. M. Suslin, M. Yu. Khlopov, V. M. Chechetkin, and V. A. Chuyanov, Astron. Rep. 40, 358 (1996).ADSGoogle Scholar
  38. 38.
    A. Burrows, Astrophys. J. 318, L57 (1987).ADSCrossRefGoogle Scholar
  39. 39.
    R. M. Bionta, G. Blewitt, C. B. Bratton, D. Casper, and A. Ciocio, Phys. Rev. Lett. 58, 1494 (1987).ADSCrossRefGoogle Scholar
  40. 40.
    K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, and Y. Oyama, Phys. Rev. Lett. 58, 1490 (1987).ADSCrossRefGoogle Scholar
  41. 41.
    E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, and I. V. Krivosheiko, JETP Lett. 45, 589 (1987).ADSGoogle Scholar
  42. 42.
    R. Schaeffer, Y. Declais, and S. Jullian, Nature 330, 142 (1987).ADSCrossRefGoogle Scholar
  43. 43.
    M. V. Popov, A. A. Filina, A. A. Baranov, P. Chardonnet, and V. M. Chechetkin, Astrophys. J. 783, 43 (2014).ADSCrossRefGoogle Scholar
  44. 44.
    V. S. Imshennik, N. L. Kal’yanova, A. V. Koldoba, and V.M. Chechetkin, Astron. Lett. 25, 206 (1999).ADSGoogle Scholar
  45. 45.
    L N. Ivanova, V. S. Imshennik, and V. M. Chechetkin, Sov. Astron. Lett. 8, 8 (1982).ADSGoogle Scholar
  46. 46.
    L. N. Ivanova, V. S. Imshennik, and V. M. Chechetkin, Astrophys. Space Sci. 31, 497 (1974).ADSCrossRefGoogle Scholar
  47. 47.
    M. V. Popov, S. D. Ustyugov, and V. M. Chechetkin, Astron. Rep. 48, 921 (2004).ADSCrossRefGoogle Scholar
  48. 48.
    V. Bychkov, M. V. Popov, A. M. Oprin, and L. Stenflo, Astron. Rep. 50, 298 (2006).ADSCrossRefGoogle Scholar
  49. 49.
    W. Hillebrandt, S. A. Sim, and F. K. Röpke, Astron. Astrophys. 465, L17 (2007); astro-ph/0702344.ADSCrossRefGoogle Scholar
  50. 50.
    J. I. Castor, Astrophys. J. 178, 779 (1972).ADSCrossRefGoogle Scholar
  51. 51.
    D. L. Tubbs and D. N. Schramm, Astrophys. J. 201, 467 (1975).ADSCrossRefGoogle Scholar
  52. 52.
    A. G. Aksenov, Astron. Lett. 24, 482 (1998).ADSGoogle Scholar
  53. 53.
    A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 56, 193 (2012).ADSCrossRefGoogle Scholar
  54. 54.
    G. V. Vereshchagin and A. G. Aksenov, Relativistic Kinetic Theory with Applications in Astrophysics and Cosmology (Cambridge Univ. Press, Cambridge, 2017).CrossRefzbMATHGoogle Scholar
  55. 55.
    A. G. Aksenov, M. Milgrom, and V. V. Usov, Astrophys. J. 609, 363 (2004); astro-ph/0309014.ADSCrossRefGoogle Scholar
  56. 56.
    I. V. Baikov and V. M. Chechetkin, Astron. Rep. 48, 229 (2004).ADSCrossRefGoogle Scholar
  57. 57.
    A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 58, 442 (2014).ADSCrossRefGoogle Scholar
  58. 58.
    S.W. Bruenn, Phys. Rev. Lett. 59, 938 (1987).ADSCrossRefGoogle Scholar
  59. 59.
    V.M. Suslin, S. D. Ustyugov, and V. M. Chechetkin, Astron. Rep. 45, 241 (2001).ADSCrossRefGoogle Scholar
  60. 60.
    I. V. Baikov, V. M. Suslin, V. M. Chechetkin, V. Bychkov, and L. Stenflo, Astron. Rep. 51, 274 (2007).ADSCrossRefGoogle Scholar
  61. 61.
    P. Ledoux, Astrophys. J. 105, 305 (1947).ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    G. S. Bisnovatyi-Kogan, Physical Problems of the Theory of Stellar Evolution (Nauka, Moscow, 1989) [in Russian].zbMATHGoogle Scholar
  63. 63.
    A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 60, 655 (2016).ADSCrossRefGoogle Scholar
  64. 64.
    A. G. Aksenov, Comput. Math. Math. Phys. 55, 1752 (2015).MathSciNetCrossRefGoogle Scholar
  65. 65.
    A. G. Aksenov, Astron. Lett. 25, 185 (1999).ADSGoogle Scholar
  66. 66.
    G. S. Bisnovatyi-Kogan, Astrophysics 55, 387 (2012); arXiv: 1203.0997.ADSCrossRefGoogle Scholar
  67. 67.
    M. V. Popov, Grav. Cosmol. 11, 177 (2005).ADSGoogle Scholar
  68. 68.
    I. Hachisu, Astrophys. J. Suppl. 61, 479 (1986).ADSCrossRefGoogle Scholar
  69. 69.
    S. Chandrasekhar and N. R. Lebovitz, Astrophys. J. 138, 185 (1963).ADSCrossRefGoogle Scholar
  70. 70.
    A. A. Baranov and V.M. Chechetkin, Astron. Rep. 55, 525 (2011)ADSCrossRefGoogle Scholar
  71. 71.
    V. M. Chechetkin, R. A. Eramzhyan, V. N. Folomeshkin, S. S. Gerstein, V. S. Imshennik, M. Y. Khlopov, and D. K. Nadyozhin, Phys. Lett. B 62, 100 (1976).ADSCrossRefGoogle Scholar
  72. 72.
    V. S. Imshennik, Sov. Astron. Lett. 18, 194 (1992).ADSGoogle Scholar
  73. 73.
    O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, Turbulence: New Approaches (Nauka, Moscow, 2002; Cambridge Int. Science, Boston, 2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. M. Chechetkin
    • 1
    • 2
  • A. G. Aksenov
    • 2
  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Computer-Aided DesignRussian Academy of SciencesMoscowRussia

Personalised recommendations