Skip to main content
Log in

Electron Motion in the Three-Dimensional Field of Undulator

  • Math Modeling in Nuclear Technologies
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

In this paper we consider the motion of relativistic electrons in an ideal three-dimensional magnetic field of an undulator. The ideality of the magnetic field means that, on the undulator axis, the field is directed strictly vertically upward and has a strictly sinusoidal shape. In the overwhelming majority of cases, only this leading component of the field is taken into account in calculating the electron trajectory. In this paper, in the equations of motion of an electron in the magnetic field of an undulator, all three components of the field are taken into account, so that the undulator field under consideration satisfies the stationary Maxwell equations. In this case, the differential equations of motion of the electron are solved analytically with the help of perturbation theory, and not by the method of averaging over fast oscillations of the electron, as was done in a number of previous papers. These analytic expressions for trajectories describe the behavior of particles in the focusing magnetic field of an undulator much more completely. An analysis of these expressions shows that the behavior of electrons in such a three-dimensional field of the undulator is much more complicated than what follows from the equations obtained by the averaging method. In particular, there is a cross effect when changes in the initial vertical parameters of the electron trajectory cause changes in the horizontal component of its trajectory and vice versa. A comparison of the solutions obtained analytically with the results of numerical calculations of electron trajectories using the Runge–Kutta method demonstrates their high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Barkov, V. M. Baryshev, et al., Nucl. Instrum. Methods 152, 23 (1978).

    Article  ADS  Google Scholar 

  2. R. P. Walker, Nucl. Instrum. Methods Phys. Res. 214, 497 (1983).

    Article  ADS  Google Scholar 

  3. P. Torggler and C. Leubner, Phys. Rev. A 39, 1989 (1989).

    Article  ADS  Google Scholar 

  4. N. V. Smolyakov, Nucl. Instr. Meth. Phys. Res. A 308, 83 (1991).

    Article  ADS  Google Scholar 

  5. N. V. Smolyakov, Sov. Tech. Phys. 37, 309 (1992).

    Google Scholar 

  6. P. Elleaume and J. Chavanne, Nucl. Instrum. Methods Phys. Res. A 304, 719 (1991).

    Article  ADS  Google Scholar 

  7. P. Elleaume, Rev. Sci. Instrum. 63, 321 (1992).

    Article  ADS  Google Scholar 

  8. P. Elleaume, in Proceedings of the European Particle Accelerator Conference EPAC'1992, p.661.

  9. J. J. Barnard, Nucl. Instrum. Methods Phys. Res. A 296, 508 (1990).

    Article  ADS  Google Scholar 

  10. G. Dattoli and A. Renieri, Laser Handbook (North-Holland, Amsterdam, 1985), Vol. 4, Chap. 1, p.1.

    Google Scholar 

  11. E. T. Scharlemann, J. Appl. Phys. 58, 2154 (1985).

    Article  ADS  Google Scholar 

  12. U. Bizzarri and F. Ciocci, et al., Riv. Nuovo Cimento 10 (5), 1 (1987).

    Article  MathSciNet  Google Scholar 

  13. M. Altarelli, et al., The European X-Ray Free Electron Laser Technical Design Report DESY XFEL Project Group 2006-097 (Hamburg, 2006).

    Google Scholar 

  14. K. Steffen, in Synchrotron Radiation and Free Electron Lasers, Proceedings of the CAS CERN Accelerator School (1990), CERN 90-03, p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Smolyakov.

Additional information

Original Russian Text © N.V. Smolyakov, M.A. Galchenkova, 2016, published in Yadernaya Fizika i Inzhiniring, 2016, Vol. 7, No. 6, pp. 515–523.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolyakov, N.V., Galchenkova, M.A. Electron Motion in the Three-Dimensional Field of Undulator. Phys. Atom. Nuclei 80, 1580–1587 (2017). https://doi.org/10.1134/S106377881710009X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377881710009X

Keywords

Navigation