Physics of Atomic Nuclei

, Volume 80, Issue 10, pp 1574–1579 | Cite as

Peculiar Features of Thermal Aging and Degradation of Rapidly Quenched Stainless Steels under High-Temperature Exposures

Promising Structural Materials


This article presents the results of comparative studies of mechanical properties and microstructure of nuclear fuel tubes and semifinished stainless steel items fabricated by consolidation of rapidly quenched powders and by conventional technology after high-temperature exposures at 600 and 700°C. Tensile tests of nuclear fuel tube ring specimens of stainless austenitic steel of grade AISI 316 and ferritic–martensitic steel are performed at room temperature. The microstructure and distribution of carbon and boron are analyzed by metallography and autoradiography in nuclear fuel tubes and semifinished items. Rapidly quenched powders of the considered steels are obtained by the plasma rotating electrode process. Positive influence of consolidation of rapidly quenched powders on mechanical properties after high-temperature aging is confirmed. The correlation between homogeneous distribution of carbon and boron and mechanical properties of the considered steel is determined. The effects of thermal aging and degradation of the considered steels are determined at 600°C and 700°C, respectively.


rapidly quenched stainless steels mechanical properties microstructure boron carbon autoradiography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. E. Waltar and A. B. Reynolds, Fast Breeder Reactors (Pergamon, Oxford, New York, 1983).Google Scholar
  2. 2.
    K. L. Murty and I. Charit, J. Nucl. Mater. 383, 189 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    R. L. Klueh, P. J. Maziasz, I. S. Kim, L. Heatherly, D. T. Hoelzer, N. Hashimoto, E. A. Kenik, and K. Miyahara, J. Nucl. Mater. 307, 773 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Iljin, G. B. Stroganov, O. Kh. Fatkullin, A. V. Shulga, and V. N. Martinov, Structure and Properties of Rapidly Quenched Alloys (Altex, Moscow, 2008) [in Russian].Google Scholar
  5. 5.
    A. V. Shulga, J. Nucl. Mater. 434, 133 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    O. Kh. Fatkullin, G. B. Stroganov, A. A. Iljin, A. V. Shulga, and V. N. Martinov, Physical Metallurgy and Technology of Rapidly Quenched Alloys, 2nd ed. (Mosk. Aviats. Inst., Moscow, 2009), Vols. 1, 2 [in Russian].Google Scholar
  7. 7.
    F. Nagase, T. Sugiyama, and T. Fuketa, J. Nucl. Sci. Technol. 46, 545 (2009).CrossRefGoogle Scholar
  8. 8.
    D. Rufer and F. Preusser, Geochronometria 34, 1 (2009).CrossRefGoogle Scholar
  9. 9.
    A. Saha Podder, I. Lonardelli, A. Molinari, and H. K. D. H. Bhadeshia, Proc. R. Soc. A 467, 3141 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    N. H. van Dijk, A. M. Butt, L. Zhao, J. Sietsma, S. E. Offerman, J. P. Wright, and S. van der Zwaag, Acta Mater. 53, 5439 (2005).CrossRefGoogle Scholar
  11. 11.
    C. P. Scott and J. Drillet, Scr. Mater. 56, 489 (2007).CrossRefGoogle Scholar
  12. 12.
    J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (Krieger, Malabar, FL, 1992).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations