Physics of Atomic Nuclei

, Volume 80, Issue 10, pp 1567–1573 | Cite as

Nucleation of Pre-precipitates in Structural Materials under Cascade-Forming Irradiation

  • S. V. Rogozhkin
  • A. A. Nikitin
  • Yu. N. Devyatko
Radiation Resistance of Materials and Equipment


A model is proposed to calculate pre-precipitate nucleation rate in supersaturated solid solutions under cascade-forming irradiation. Estimates of the rate of nucleation of copper-enriched clusters in Fe–Cu solid solutions with a copper concentration of 0.05–0.18 at. % due to reactor irradiation are carried out. A comparison with the experimental data on irradiation of structural materials shows that the formation of precipitate nuclei takes place in the cascade region involved at the final stages of cascade relaxation, whose volume is about two times higher than the cascade volume at the dynamic stage.


irradiation clusters precipitation displacement cascades 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. I. Ivanov and Yu. M. Platov, Radiation Physics of Metals and Applications (Nauka, Moscow, 2002) [in Russian].Google Scholar
  2. 2.
    G. S. Was, Fundamentals of Radiation Materials Science (Springer, Berlin, Heidelberg, 2007).Google Scholar
  3. 3.
    P. Pareige, B. Radiguet, R. Krummeich-Bangier, A. Barbu, O. Zabusov, and M. Kozodaev, Philos. Mag. 85, 429 (2005).CrossRefADSGoogle Scholar
  4. 4.
    R. L. Klueh, K. Shiba, and M. A. Sokolov, J. Nucl. Mater. 386–388, 191 (2009).CrossRefGoogle Scholar
  5. 5.
    R. Chaouadi and R. Gérard, J. Nucl. Mater. 418, 137 (2011).CrossRefADSGoogle Scholar
  6. 6.
    A. Kryukov, L. Debarberis, A. Ballesteros, V. Krsjak, R. Burcl, S. V. Rogozhkin, A. A. Nikitin, A. A. Aleev, A. G. Zaluzhnyi, V. I. Grafutin, O. Ilyukhina, Yu. V. Funtikov, and A. Zeman, J. Nucl. Mater. 429, 190 (2012).CrossRefADSGoogle Scholar
  7. 7.
    L. Debarberis, B. Acosta, A. Zeman, F. Sevini, A. Ballesteros, A. Kryukov, F. Gillemot, and M. Brumovsky, Scripta Mater. 53, 769 (2005).CrossRefGoogle Scholar
  8. 8.
    E. A. Kuleshova, B. A. Gurovich, Z. V. Bukina, A. S. Frolov, D. A. Maltsev, E. V. Krikun, D. A. Zhurko, and G. M. Zhuchkov, J. Nucl. Mater. 490, 247 (2017).CrossRefADSGoogle Scholar
  9. 9.
    P. Pareige, B. Radiguet, A. Suvorov, M. Kozodaev, E. Krasikov, O. Zabusov, and J. P. Massoud, Surf. Interface Anal. 36, 581 (2004).CrossRefGoogle Scholar
  10. 10.
    M. K. Miller, K. F. Russell, M. A. Sokolov, and R. K. Nanstad, J. Nucl. Mater. 361, 248 (2007).CrossRefADSGoogle Scholar
  11. 11.
    B. A. Gurovich, E. A. Kuleshova, O. V. Lavrenchuk, K. E. Prikhodko, and Ya. I. Shtrombakh, J. Nucl. Mater. 264, 333 (1999).CrossRefADSGoogle Scholar
  12. 12.
    E. A. Kuleshova, B. A. Gurovich, Ya. I. Shtrombakh, Yu. A. Nikolaev, and V. A. Pechenkin, J. Nucl. Mater. 342, 77 (2005).CrossRefADSGoogle Scholar
  13. 13.
    P. D. Styman, J. M. Hyde, K. Wilford, A. Morley, and G. D. W. Smith, Prog. Nucl. Energy 57, 86 (2012).CrossRefGoogle Scholar
  14. 14.
    S. I. Golubov, A. V. Barashev, and R. E. Stoller, Compr. Nucl. Mater. 1, 357 (2012).CrossRefGoogle Scholar
  15. 15.
    P. A. Platonov, Yu. A. Nikolaev, and Ya. I. Shtrombakh, Int. J. Pressure Vessels Piping 79, 643 (2002).CrossRefGoogle Scholar
  16. 16.
    S. I. Golubov, A. Serra, Y. N. Osetsky, and A. V. Barashev, J. Nucl. Mater. 277, 113 (2000).CrossRefADSGoogle Scholar
  17. 17.
    Ya. Shtrombakh and Yu. Nikolaev, J. ASTM Int. 4, JAI100696 (2007).CrossRefGoogle Scholar
  18. 18.
    B. Radiguet, A. Barbu, and P. Pareige, J. Nucl. Mater. 360, 104 (2007).CrossRefADSGoogle Scholar
  19. 19.
    F. Christien and A. Barbu, J. Nucl. Mater. 324, 90 (2004).CrossRefADSGoogle Scholar
  20. 20.
    A. Deschamps, C. Genevois, M. Nicolas, F. Perrard, and F. Bley, Philos. Mag. 85, 3091 (2005).CrossRefADSGoogle Scholar
  21. 21.
    A. V. Barashev, S. I. Golubov, D. J. Bacon, P. E. J. Flewitt, and T. A. Lewis, Acta Mater. 52, 877 (2004).CrossRefGoogle Scholar
  22. 22.
    V. A. Pechenkin, Yu. V. Konobeev, I. V. Pyshin, E. E. Petrov, V. A. Khoromskii, V. P. Kryuchkov, A. M. Voloshchenko, V. I. Tsofin, and K. G. Rosanov, At. Energy 100, 332 (2006).CrossRefGoogle Scholar
  23. 23.
    A. I. Blohin, N. A. Demin, and V. M. Chernov, Vopr. At. Nauki Tekh., Ser.: Materialoved. Nov. Mater. 1 (66), 70 (2006) [in Russian].Google Scholar
  24. 24.
    M. J. Norgett, M. T. Robinson, and I. M. Torrens, Nucl. Eng. Des. 33, 50 (1975).CrossRefGoogle Scholar
  25. 25.
    Yu. N. Devyatko, V. M. Chernov, A. A. Plyasov, and S. V. Rogozhkin, Vopr. At. Nauki Tekh., Ser.: Materialoved. Nov. Mater. 1 (62), 288 (2004) [in Russian].Google Scholar
  26. 26.
    I. L. Katz and H. Wiedersich, J. Chem. Phys. 55, 1414 (1971).CrossRefADSGoogle Scholar
  27. 27.
    Yu. V. Mikhailova and L. A. Maksimov, Sov. Phys. JETP 32, 747 (1971).ADSGoogle Scholar
  28. 28.
    E. M. Livshits and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).Google Scholar
  29. 29.
    E. Meslin, B. Radiguet, P. Pareige, and A. Barbu, J. Nucl. Mater. 399, 137 (2010).CrossRefADSGoogle Scholar
  30. 30.
    Yu. N. Devyatko, S. V. Rogozhkin, A. A. Plyasov, and V. M. Chernov, Vopr. At. Nauki Tekh., Ser.: Materialoved. Nov. Mater. 2 (65), 123 (2005) [in Russian].Google Scholar
  31. 31.
    M. H. Mathon, A. Barbu, F. Dunstetter, F. Maury, N. Lorenzelli, and C. H. de Novion, J. Nucl. Mater. 245, 224 (1997).CrossRefADSGoogle Scholar
  32. 32.
    I. M. Lifshitz and V. V. Slezov, Sov. Phys. JETP 8, 331 (1958).Google Scholar
  33. 33.
    M. Perez, F. Perrard, V. Massardier, X. Kleber, A. Deschamps, H. de Monestrol, P. Pareige, and G. Covarel, Philos. Mag. 85, 2197 (2005).CrossRefADSGoogle Scholar
  34. 34.
    G. Salje and M. Feller-Kniepmeier, J. Appl. Phys. 48, 1833 (1977).CrossRefADSGoogle Scholar
  35. 35.
    U. Birkenheuer, A. Ulbricht, F. Bergner, and A. Gokhman, J. Phys.: Conf. Ser. 247, 012011 (2010).Google Scholar
  36. 36.
    A. Zeman, A. Chernobaeva, V. Grafutin, S. Rogozhkin, L. Debarberis, A. Ballesteros, D. Erak, and A. Nikitin, ASTM Spec. Tech. Papers 1547 STP, 85 (2013).Google Scholar
  37. 37.
    S. V. Rogozhkin, A. A. Nikitin, A. A. Aleev, A. G. Zaluzhny, A. A. Chernobarva, D. Yu. Erak, Ya. I. Shtrombakh, and O. O. Zabusov, Yad. Fiz. Inzhin. 4, 73 (2013).Google Scholar
  38. 38.
    M. K. Miller, K. F. Russell, M. A. Sokolov, and R. K. Nanstad, J. Nucl. Mater. 351, 216 (2006).CrossRefADSGoogle Scholar
  39. 39.
    K. Fujii, H. Nakata, K. Fukuya, T. Ohkubo, K. Hono, Y. Nagai, M. Hasegawa, and T. Yoshiie, Nucl. Mat. 400, 46 (2010).CrossRefADSGoogle Scholar
  40. 40.
    T. Takeuchi, A. Kuramoto, J. Kameda, T. Toyama, Y. Nagai, M. Hasegawa, T. Ohkubo, T. Yoshiie, Y. Nishiyama, and K. Onizawa, J. Nucl. Mater. 402, 93 (2010).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. V. Rogozhkin
    • 1
    • 2
  • A. A. Nikitin
    • 1
    • 2
  • Yu. N. Devyatko
    • 2
  1. 1.Alikhanov Institute of Theoretical and Experimental PhysicsNational Research Center Kurchatov InstituteMoscowRussia
  2. 2.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations