Advertisement

Physics of Atomic Nuclei

, Volume 80, Issue 10, pp 1606–1612 | Cite as

Cryogenic Model of the Gravitational Antenna OGRAN

  • N. N. Kvashnin
  • M. V. Kuvshinskyi
  • S. I. Oreshkin
  • S. M. Popov
  • V. N. Rudenko
  • M. N. Skvortsov
  • I. S. Yudin
  • S. V. Blagov
Engineering Design of Nuclear Physics Equipment
  • 13 Downloads

Abstract

The optoacoustic gravitational-wave antenna (OGRAN) located in the underground laboratory of the Baksan Neutrino Observatory has a limited sensitivity sufficient only to detect gravitational radiation from astronomical objects at a distance of 100 kpc. In order to cover sources in the zone with a radius of up to 15 Mpc, it is proposed to economically upgrade the antenna and cool down the body of the acoustic detector to a temperature of liquid nitrogen of ~78 K [1]. In this case, the spectral density of the Brownian noise of the detector decreases owing to temperature and also owing to the subsequent increase in its acoustic Q factor by one and a half to two orders of magnitude. This paper presents the results of an experiment for testing these ideas on the cryo-OGRAN prototype while preserving the optical detection scheme used for the uncooled antenna.

Keywords

gravitational radiation gravitational detectors laser interferometers cryogenic mirrors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Kulagin, S. I. Oreshkin, S. M. Popov, et al., Phys. At. Nucl. 79, 1552 (2016).CrossRefGoogle Scholar
  2. 2.
    S. N. Bagaev, L. B. Bezrukov, N. L. Kvashnin, et al., Rev. Sci. Instrum. 85, 065114 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    S. N. Bagaev, L. B. Bezrukov, N. L. Kvashnin, et al., Instrum. Exp. Tech. 58, 257 (2015).CrossRefGoogle Scholar
  4. 4.
    R. V. Novoseltseva, M. M. Boliev, I. M. Dzaparova, et al., Bull. Russ. Acad. Sci.: Phys. 75, 419 (2011).CrossRefGoogle Scholar
  5. 5.
    P. Astone, D. Babusci, L. Baggio, et al., Phys. Rev. D: Part. Fields 76, 102001 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    M. Rosa, L. Baggio, M. Cerdonio, et al., Class. Quantum Grav. 19, 1919 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    M. Punturo, M. Abernathy, F. Acernese, et al., Class. Quantum Grav. 27, 084007 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    L. B. Bezrukov, N. L. Kvashnin, A. M. Motylev, et al., Instrum. Exp. Tech. 53, 423 (2010).CrossRefGoogle Scholar
  9. 9.
    V. A. Krysanov, A. M. Motylev, S. I. Oreshkin, and V. N. Rudenko, Meas. Tech. 57, 1416 (2015).CrossRefGoogle Scholar
  10. 10.
    R. Drever, J. Hough, A. Munley, et al., Appl. Phys. 31, 97 (1983).CrossRefGoogle Scholar
  11. 11.
    C. Schwarz, D. Hainert, P. Seidel, et al., Phys. Status Solidi A 208, 2719 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    www.polyus.info/.Google Scholar
  13. 13.
    B. P. Abbott et al. (LIGO Sci. Collab. and Virgo Collab.), Phys. Rev. Lett. 118, 221101 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    I. Bichak and V. N. Rudenko, Gravitational Waves in General Relativity and the Problem of Their Detection (Moscow Gos. Univ., Moscow, 1987) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. N. Kvashnin
    • 1
  • M. V. Kuvshinskyi
    • 2
  • S. I. Oreshkin
    • 2
  • S. M. Popov
    • 2
  • V. N. Rudenko
    • 2
  • M. N. Skvortsov
    • 1
  • I. S. Yudin
    • 3
  • S. V. Blagov
    • 3
  1. 1.Institute of Laser Physics, Siberian BranchNovosibirskRussia
  2. 2.Astronomical InstituteMoscow State UniversityMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations