Physics of Atomic Nuclei

, Volume 80, Issue 10, pp 1620–1626 | Cite as

Substantiation of the Possibility of Predicting Behavior of Solids under Extreme Conditions at Various High-Intensity Impacts

  • E. V. Kosheleva
  • S. I. Krivosheev
  • N. I. Sel’chenkova
  • A. Ya. Uchaev
Solids Under Extreme Conditions


The paper is devoted to the data analysis on the amplitude-time regularities of the dynamic failure process of solids under various types of high-intensity impact in the ranges of nonequilibrium states from 3 × 10−10 to 10−5 s and establishing general regularities of behavior of unstudied materials under extreme conditions. We have analyzed the process of dynamic destruction of solids of different nature using the method of magnetic-pulse loading in the microsecond range of nonequilibrium states, as well as the dynamic failure process for a number of metals in the mode of pulsed volume heating under the action of pulsed relativistic electron beams in the nanosecond and subnanosecond range of nonequilibrium states. It has been shown that, upon using different methods of pulsed loading in the dynamic longevity range, the failure time as a function of amplitude of applied load has an exponential form for various solid materials. This indicates the scaling nature of the destruction process. The foregoing determines the possibility of predicting the behavior of unstudied solid bodies in the dynamic range of nonequilibrium states.


dynamic longevity range quasistatic longevity range dynamic loading magnetic-pulse loading method relativistic electron beams mode of pulsed volume heating similarity of processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. V. Kosheleva, V. T. Punin, N. I. Selchenkova, and A. Ya. Uchaev, Common Regularities of Hierarchy Relaxation Processes in Metals under the Action of Penetrating Radiation Pulses (RFNC, Sarov, 2015) [in Russian].Google Scholar
  2. 2.
    V. R. Regel, A. I. Slutsker, and E. I. Tomashevskii, Kinetics Nature of Solid Body Density (Nauka, Moscow, 1974) [in Russian].Google Scholar
  3. 3.
    R. I. Il’kaev, V. T. Punin, A. Ya. Uchaev, S. A. Novikov, E. V. Kosheleva, L. A. Platonova, N. I. Sel’chenkova, and N. A. Yukina, Dokl. Phys. 48, 627 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    E. K. Bonushkin, N. I. Zavada, S. A. Novikov, and A. Ya. Uchaev, Kinetics of Dynamic Metals Failure in the Mode of Pulsed Volume Heat Up (Sci. Ed., Sarov, 1998) [in Russian].Google Scholar
  5. 5.
    S. A. Novikov, Combust. Explos. Shock Waves 21, 722 (1985).CrossRefGoogle Scholar
  6. 6.
    S. I. Krivosheev, N. V. Korovkin, V. K. Slastenko, and S. G. Magazinov, Int. J. Mech. 9, 293 (2015).Google Scholar
  7. 7.
    S. I. Krivosheev and S. G. Magazinov, J. Phys.: Conf. Ser. 774, 012049 (2016). doi 10.1088/1742-6596/774/1/012049Google Scholar
  8. 8.
    A. A. Gukhman, Introduction into the Similarity Theory (Vyssh. Shkola, Moscow, 1973) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. V. Kosheleva
    • 1
  • S. I. Krivosheev
    • 2
  • N. I. Sel’chenkova
    • 1
  • A. Ya. Uchaev
    • 1
  1. 1.Russian Federal Nuclear Center—All-Russian Research Institute of Experimental PhysicsSarov, Nizhny Novgorod oblastRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations