Physics of Atomic Nuclei

, Volume 80, Issue 5, pp 957–967 | Cite as

Modern status of photonuclear data

Proceedings of LXVI International Conference on Nuclear Spectroscopy and Atomic Nuclei Structure October 11–14, 2016, Sarov, Russia/Nuclei Theory

Abstract

The reliability of experimental cross sections obtained for (γ, 1n), (γ, 2n), and (γ, 3n) partial photoneutron reactions using beams of quasimonoenergetic annihilation photons and bremsstrahlung is analyzed by employing data for a large number of medium-heavy and heavy nuclei, including those of 63,65Cu, 80Se, 90,91,94Zr, 115In, 112−124Sn, 133Cs, 138Ba, 159Tb, 181Ta, 186−192Os, 197Au, 208Pb, and 209Bi. The ratios of the cross sections of definite partial reactions to the cross section of the neutron-yield reaction, F i = σ(γ, in)/σ(γ, xn), are used as criteria of experimental-data reliability. By definition, positive values of these ratios should not exceed the upper limits of 1.00, 0.50, 0.33,... for i = 1, 2, 3,..., respectively. For many nuclei, unreliable values of the above ratios were found to correlate clearly in various photon-energy regions F i with physically forbidden negative values of cross sections of partial reactions. On this basis, one can conclude that correspondent experimental data are unreliable. Significant systematic uncertainties of the methods used to determine photoneutron multiplicity are shown to be the main reason for this. New partial-reaction cross sections that satisfy the above data-reliability criteria were evaluated within an experimental–theoretical method [σ eval(γ, in) = F i theor (γ, in) × σ expt(γ, xn)] by employing the ratios F i theor (γ, in) calculated on the basis of a combined photonuclear-reaction model. It was obtained that cross sections evaluated in this way deviate substantially from the results of many experiments performed via neutron-multiplicity sorting, but, at the same time, agree with the results of alternative activation experiments. Prospects of employing methods that would provide, without recourse to photoneutron-multiplicity sorting, reliable data on cross sections of partial photoneutron reactions are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Otsuka and S. Dunaeva, INDC(NDS)-0401 (IAEA, Vienna, Austria, 2010).Google Scholar
  2. 2.
    N. Otuka et al., Nucl. Data Sheeets 120, 272 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    NIIYaF MGU, Database on Nuclear Reactions EXFOR. http://cdfe.sinp.msu.ru/exfor/index.php; IAEA, Nuclear Data Section Experimental Nuclear Reaction Data EXFOR. http://wwwnds.iaea.org/exfor; USA Natl. Nuclear Data Center, Database CSISRS and EXFOR, Experimental Nuclear Reaction Data. http://www.nndc.bnl.gov/exfor00.htm.Google Scholar
  4. 4.
    E. G. Fuller and H. Gerstenberg, Photonuclear Data–Abstracts Sheets 1955–1982 (Natl. Bureau of Standards, USA, 1983).Google Scholar
  5. 5.
    S. S. Dietrich and B. L. Berman, At. Data Nucl. Data Tables 38, 199 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47, 713 (1975).ADSCrossRefGoogle Scholar
  7. 7.
    A. V. Varlamov, V. V. Varlamov, D. S. Rudenko, and M. E. Stepanov, INDC(NDS)-394, IAEA NDS (IAEA, Vienna, Austria, 1999).Google Scholar
  8. 8.
    V. V. Varlamov, N. N. Peskov, D. S. Rudenko, and M. E. Stepanov, INDC(CCP)-440, IAEA NDS (IAEA, Vienna, Austria, 2004), p. 37.Google Scholar
  9. 9.
    V. V. Varlamov and B. S. Ishkhanov, INDC(CCP)- 433, IAEA NDS (IAEA, Vienna, Austria, 2002).Google Scholar
  10. 10.
    E. Wolynec, A. R. V. Martinez, P. Gouffon, et al., Phys. Rev. C 29, 1137 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    E. Wolynec and M. N. Martins, Rev. Brasil. Fis. 17, 56 (1987).Google Scholar
  12. 12.
    B. L. Berman, R. E. Pywell, S. S. Dietrich, et al., Phys. Rev. C 36, 1286 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    V. V. Varlamov, N. N. Peskov, D. S. Rudenko, and M. E. Stepanov, Vopr. At. Nauki Tekh., Ser.: Yad. Konstanty, Nos. 1–2, 48 (2003).Google Scholar
  14. 14.
    V. V. Varlamov and B. S. Ishkhanov, Phys. Part. Nucl. 35, 459 (2004)Google Scholar
  15. 15.
    Handbook on Photonuclear Data forApplications, Cross Sections and Spectra, IAEA-TECDOC-1178, IAEA NDS (IAEA, Vienna, Austria, 2000).Google Scholar
  16. 16.
    S. C. Fultz, R. L. Bramblett, J. T. Caldwell, and R. R. Harvey, Phys. Rev. B 133, 1149 (1964).ADSCrossRefGoogle Scholar
  17. 17.
    B. L. Berman, J. T. Caldwell, R. R. Harvey, et al., Phys. Rev. 162, 1098 (1967).ADSCrossRefGoogle Scholar
  18. 18.
    S. C. Fultz, B. L. Berman, J. T. Caldwell, et al., Phys. Rev. 186, 1255 (1969).ADSCrossRefGoogle Scholar
  19. 19.
    R. L. Bramblett, J. T. Caldwell, G. F. Auchampaugh, and S. C. Fultz, Phys. Rev. 129, 2723 (1963).ADSCrossRefGoogle Scholar
  20. 20.
    V. V. Varlamov, B. S. Ishkhanov, V. N. Orlin, and V. A. Chetvertkova, Bull. Russ. Acad. Sci.: Phys. 74, 833 (2010).CrossRefGoogle Scholar
  21. 21.
    V. V. Varlamov, B. S. Ishkhanov, V. N. Orlin, and S. Yu. Troshchiev, Bull. Russ. Acad. Sci.: Phys. 74, 842 (2010).CrossRefGoogle Scholar
  22. 22.
    A. Leprêtre, H. Beil, R. Bergère, et al., Nucl. Phys. A 219, 39 (1974).ADSCrossRefGoogle Scholar
  23. 23.
    R. Bergère, H. Beil, and A. Veyssière, Nucl. Phys. A 121, 463 (1968).ADSCrossRefGoogle Scholar
  24. 24.
    B. S. Ishkhanov and V. N. Orlin, Phys. Part. Nucl. 38, 232 (2007).CrossRefGoogle Scholar
  25. 25.
    B. S. Ishkhanov and V. N. Orlin, Phys. At. Nucl. 71, 493 (2008).CrossRefGoogle Scholar
  26. 26.
    B. S. Ishkhanov, V. N. Orlin, and V. V. Varlamov, EPJ Web Conf. 38, 12003 (2012).CrossRefGoogle Scholar
  27. 27.
    V. V. Varlamov, B. S. Ishkhanov, and V. N. Orlin, Phys. At. Nucl. 75, 1339 (2012).CrossRefGoogle Scholar
  28. 28.
    V. V. Varlamov, B. S. Ishkhanov, V. N. Orlin, N. N. Peskov, and M. E. Stepanov, Phys. At. Nucl. 76, 1403 (2013).CrossRefGoogle Scholar
  29. 29.
    V. V. Varlamov, B. S. Ishkhanov, V. N. Orlin, N. N. Peskov, and K. A. Stopani, Phys. At. Nucl. 77, 1491 (2014).CrossRefGoogle Scholar
  30. 30.
    V. V. Varlamov, B. S. Ishkhanov, V. N. Orlin, and K. A. Stopani, Eur. Phys. J. A 50, 114 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    V. V. Varlamov, M. A. Makarov, N. N. Peskov, and M. E. Stepanov, Bull. Russ. Acad. Sci. Phys. 78, 412 (2014).CrossRefGoogle Scholar
  32. 32.
    R. L. Bramblett, J. T. Caldwell, R. R. Harvey, and S. C. Fultz, Phys. Rev. B 133, 869 (1964).ADSCrossRefGoogle Scholar
  33. 33.
    B. S. Ishkhanov, V. N. Orlin, N. N. Peskov, and V. V. Varlamov, Phys. Part. Nucl. 48, 76 (2017).CrossRefGoogle Scholar
  34. 34.
    Yu. I. Sorokin and B. A. Yur’ev, Sov. J. Nucl. Phys. 20, 123 (1975).Google Scholar
  35. 35.
    Yu. I. Sorokin and B. A. Yur’ev, Bull. Acad. Sci. USSR: Phys. Ser. 39, 98 (1975).Google Scholar
  36. 36.
    V. V. Varlamov, A. I. Davydov, M. A. Makarov, V. N. Orlin, and N. N. Peskov, Bull. Russ. Acad. Sci.: Phys. 80, 317 (2016).CrossRefGoogle Scholar
  37. 37.
    B. S. Ishkhanov, V. N. Orlin, and S. Yu. Troshchiev, Phys. At. Nucl. 75, 253 (2012).CrossRefGoogle Scholar
  38. 38.
    S. S. Belyshev, D. M. Filipescu, I. Gheoghe, B. S. Ishkhanov, V. V. Khankin, A. S. Kurilik, A. A. Kuznetsov, V. N. Orlin, N. N. Peskov, K. A. Stopani, O. Tesileanu, and V. V. Varlamov, Eur. Phys. J. A 51, 67 (2015).ADSCrossRefGoogle Scholar
  39. 39.
    I. Gheorghe, D. Filipescu, S. Katayama, H. Utsunomiya, S. S. Belyshev, V. V. Varlamov, T. Shima, S. Amano, and S. Miyamoto, in Proceedings of the ND2016 International Conference on Nuclear Data for Science and Technology, 11–16 Sept. 2016, Bruges, Belgium (Joint Research Centre, European Commission, 2016), p. 307.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations