Physics of Atomic Nuclei

, Volume 80, Issue 5, pp 877–889 | Cite as

Study of ground states of 3H, 3,4,6He, 6Li, and 9Be nuclei by Feynman’s continual integrals method

Proceedings of LXVI International Conference on Nuclear Spectroscopy and Atomic Nuclei Structure October 11–14, 2016, Sarov, Russia/Nuclei Theory
  • 18 Downloads

Abstract

The ground-state energies and the squared moduli of the ground-state wave functions are calculated for the 3H, 3,4,6He, 6Li, and 9Be nuclei by Feynman’s continual (path) integrals method. The results are in satisfactory agreement with experimental data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. E. Penionzhkevich, Phys. At. Nucl. 74, 1615 (2011).CrossRefGoogle Scholar
  2. 2.
    A. Lemasson, A. Shrivastava, A. Navin, et al., Phys. Rev. Lett. 103, 232701 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Kulko, N. A. Demekhina, R. Kalpakchieva, Yu. A. Muzychka, Yu. E. Penionzhkevich, D. N. Rassadov, N. K. Skobelev, and D. A. Testov, Phys. At. Nucl. 70, 613 (2007).CrossRefGoogle Scholar
  4. 4.
    A. A. Kulko, N. A. Demekhina, R. Kalpakchieva, et al., J. Phys. G 34, 2297 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    Yu. E. Penionzhkevich, R. A. Astabatyan, N. A. Demekhina, et al., Eur. Phys. J. A 31, 185 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. E. Penionzhkevich, V. I. Zagrebaev, S. M. Lukyanov, and R. Kalpakchieva, Phys. Rev. Lett 96, 162701 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    N. K. Skobelev, A. A. Kulko, Yu. E. Penionzhkevich, E. I. Voskoboinik, V. Kroha, V. Burjan, Z. Hons, J. Mrázek, Š. Piskoř, and E. Šimečkova, Phys. Part. Nucl. Lett. 10, 410 (2013).CrossRefGoogle Scholar
  8. 8.
    N. K. Skobelev, A. A. Kulko, Yu. E. Penionzhkevich, E. I. Voskoboynik, V. Kroha, V. Burjan, Z. Hons, J. Mrázek, Š. Piskoř, and E. Šimečkova, Bull. Russ. Acad. Sci.: Phys. 77, 795 (2013).CrossRefGoogle Scholar
  9. 9.
    N. K. Skobelev, A. A. Kulko, V. Kroha, et al., J. Phys. G 38, 035106 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    N. K. Skobelev, Yu. E. Penionzhkevich, E. I. Voskoboinik, V. Kroha, V. Burjan, Z. Hons, J. Mrázek, Š. Piskoř, E. Šimečkova, and A. Kugler, Phys. Part. Nucl. Lett. 11, 114 (2014).CrossRefGoogle Scholar
  11. 11.
    J. J. Kolata, V. Guimaräes, D. Peterson, et al., Phys. Rev. Lett. 81, 4580 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    V. I. Zagrebaev, A. S. Denikin, A. V. Karpov, A. P. Alekseev, M. A. Naumenko, V. A. Rachkov, V. V. Samarin, and V. V. Saiko, NRV Low Energy Nuclear Knowledge Base. http://nrv.jinr.ru/.Google Scholar
  13. 13.
    V. G. Soloviev, Theory of Atomic Nucleus: Nuclear Models (Energoizdat, Moscow, 1981) [in Russian].Google Scholar
  14. 14.
    Yu. Ts. Oganessian, V. I. Zagrebaev, and J. S. Vaagen, Phys. Rev. C 60, 044605 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    L. I. Galanina and N. S. Zelenskaya, Phys. At. Nucl. 65, 1282 (2002).CrossRefGoogle Scholar
  16. 16.
    R. Raabe, A. Andreev, M. Huyse, et al., Phys. Rev. C 67, 044602 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    L. I. Galanina and N. S. Zelenskaya, Phys. At. Nucl. 70, 283 (2007).CrossRefGoogle Scholar
  18. 18.
    L. I. Galanina and N. S. Zelenskaya, Phys. Part. Nucl. 43, 147 (2012).CrossRefGoogle Scholar
  19. 19.
    W. von Oertzen, M. Freer, and Y. Kanada En’yo, Phys. Rep. 432, 43 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    P. Descouvemont, T. Druet, L. F. Canto, and M. S. Hussein, Phys. Rev. C 91, 024606 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    V. T. Voronchev, V. M. Krasnopol’sky, and V. I. Kukulin, J. Phys. G 8, 649 (1982).ADSCrossRefGoogle Scholar
  22. 22.
    V. T. Voronchev, V. M. Krasnopol’sky, V. I. Kukulin, and P. B. Sazonov, J. Phys. G 8, 667 (1982).ADSCrossRefGoogle Scholar
  23. 23.
    M. V. Zhukov, B. V. Danilin, D. V. Fedorov, et al., Phys. Rep. 231, 151 (1993).ADSCrossRefGoogle Scholar
  24. 24.
    V. I. Kukulin, V. M. Krasnopol’sky, M. A. Miselkhi, and V. T. Voronchev, Sov. J. Nucl. Phys. 34, 11 (1981).Google Scholar
  25. 25.
    V. I. Kukulin, V. M. Krasnopol’sky, V. T. Voronchev, and P. B. Sazonov, Nucl.Phys. A 453, 365 (1986).ADSCrossRefGoogle Scholar
  26. 26.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).MATHGoogle Scholar
  27. 27.
    A. A. Slavnov and L. D. Faddeev, Gauge Fields: An Introduction to Quantum Theory (Nauka, Moscow, 1978; Westview Press, Boulder, CO, 1993).MATHGoogle Scholar
  28. 28.
    D. I. Blokhintsev, Principles of Quantum Mechanics (Nauka, Moscow, 1976; Allyn and Bacon, Boston, 1964).MATHGoogle Scholar
  29. 29.
    E. V. Shuryak, Sov. Phys. Usp. 27, 448 (1984).ADSCrossRefGoogle Scholar
  30. 30.
    E. V. Shuryak and O. V. Zhirov, Nucl. Phys. B 242, 393 (1984).ADSCrossRefGoogle Scholar
  31. 31.
    V. V. Samarin, Phys. At. Nucl. 78, 861 (2015).CrossRefGoogle Scholar
  32. 32.
    V. V. Samarin and M. A. Naumenko, Bull. Russ. Acad. Sci.: Phys. 80, 283 (2016).CrossRefGoogle Scholar
  33. 33.
    M. A. Naumenko and V. V. Samarin, Supercomp. Front. Innov. 3 (2), 80 (2016).Google Scholar
  34. 34.
    R. I. Dzhibuti and K. V. Shitikova, Method of Hyperspherical Harmonics in Atomic and Nuclear Physics (Energoatomizdat, Moscow, 1993) [in Russian].Google Scholar
  35. 35.
    S. M. Ermakov, Monte Carlo Method in Computational Mathematics: Introductory Course (Nevskii Dialekt, St. Petersburg, 2009) [in Russian].Google Scholar
  36. 36.
    Yu. G. Pollyak, Probabilistic Modeling on Electronic Computers (Sovetskoe Radio, Moscow, 1971) [in Russian].Google Scholar
  37. 37.
    V. P. Zhigunov and B. N. Zakhar’ev, Coupled-Channel Method in Quantum Scattering Theory (Atomizdat, Moscow, 1974) [in Russian].Google Scholar
  38. 38.
    NVIDIA CUDA. http://developer.nvidia.com/cudazone/.Google Scholar
  39. 39.
    E. E. Perepelkin, B. I. Sadovnikov, and N. G. Inozemtseva, Computing on Graphics Processors (GPU) in Mathematical and Theoretical Physics (LENAND, Moscow, 2014) [in Russian].MATHGoogle Scholar
  40. 40.
    J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU Programming (Addison-Wesley, New York, 2010).Google Scholar
  41. 41.
    HybriLIT—Heterogeneous Cluster of LIT JINR, URL: http://hybrilit.jinr.ru/.Google Scholar
  42. 42.
    G. R. Satcher and W. G. Love, Phys. Rep. 55, 183 (1979).ADSCrossRefGoogle Scholar
  43. 43.
    M. A. G. Alvarez, L. C. Chamon, D. Pereira, et al., Nucl. Phys. A 656, 187 (1999).ADSCrossRefGoogle Scholar
  44. 44.
    H. Kanada, T. Kaneko, S. Nagata, and M. Nomoto, Prog. Theor. Phys. 61, 1327 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  2. 2.Dubna State UniversityDubna, Moscow oblastRussia

Personalised recommendations