Physics of Atomic Nuclei

, Volume 80, Issue 5, pp 928–941 | Cite as

Peculiarities in total cross sections of reactions with weakly bound nuclei 6He, 9Li

  • Yu. E. Penionzhkevich
  • Yu. G. Sobolev
  • V. V. Samarin
  • M. A. Naumenko
Proceedings of LXVI International Conference on Nuclear Spectroscopy and Atomic Nuclei Structure October 11–14, 2016, Sarov, Russia/Nuclei Theory


The energy dependence of the total cross sections for the 6He + Si and 9Li + Si reactions was measured at beam energies between 5 and 20 MeV per nucleon. The results agree with experimental data published for the 6He + Si reaction. New data are obtained for the 9Li + Si reaction in the vicinity of a local enhancement of the total cross section. A theoretical analysis of the possible reasons behind the appearance of this peculiarity in the case of collisions of 6He and 9Li nuclei with silicon target nuclei is performed. In particular, the enhancement may owe its origin to the effect of loosely bound projectile nucleons.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. E. Penionzhkevich and R. Kalpakchieva, Light Nuclei near Neutron Stability Boundary (JINR, Dubna, 2016) [in Russian].Google Scholar
  2. 2.
    Yu. G. Sobolev, A. Budzanovsky, E. Byalkovsky, et al., Bull. Russ.Acad. Sci.: Phys. 69, 1790 (2005).Google Scholar
  3. 3.
    V. Yu. Ugryumov, I. V. Kuznetsov, E. Byalkovsky, et al., Phys. At. Nucl. 68, 16 (2005).CrossRefGoogle Scholar
  4. 4.
    Yu. G. Sobolev, M. P. Ivanov, and Yu. E. Penionzhkevich, Instrum. Exp. Tech. 55, 618 (2012).CrossRefGoogle Scholar
  5. 5.
    Yu. G. Sobolev, Yu. E. Penionzhkevich, D. Aznabaev, et al., Phys. Part. Nucl. 48, (2017, in press).Google Scholar
  6. 6.
    Yu. G. Sobolev, M. P. Ivanov, N. A. Kondrat’ev, and Yu. E. Penionzhkevich, Instrum. Exp. Tech. 54, 449 (2011).CrossRefGoogle Scholar
  7. 7.
    I. Sivaček, Yu. G. Sobolev, A. V. Ashmanov, and N. A. Lashmanov, in: Proceedings of the International Symposium on Exotic Nuclei, Kazan, Sept. 2016 (World Scientific, Singapore, 2017), p. 356.Google Scholar
  8. 8.
    A. M. Rodin, S. V. Stepantsov, D. D. Bogdanov, et al., Nucl. Instrum. Methods Phys. Res. B 204, 114 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    R. E. Warner, R. A. Patty, P. M. Voyles, et al., Phys. Rev. C 54, 1700 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    R. E. Warner, F. Carstoiu, J. A. Brown, et al., Phys. Rev. C 74, 014605 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    A. Ingemarsson, J. Nyberg, P. U. Renberg, et al., Nucl. Phys. A 676, 3 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    G. I. Marchuk, Methods of Computational Mathematics (Nauka, Moscow, 1980) [in Russian].MATHGoogle Scholar
  13. 13.
    K. V. Lukyanov, E. V. Zemlyanaya, V. K. Lukyanov, I. N. Kukhtina, Yu. E. Penionzhkevich, and Yu. G. Sobolev, Bull. Russ. Acad. Sci.: Phys. 72, 356 (2008).CrossRefGoogle Scholar
  14. 14.
    G. D. Kabdrakhimova, Yu.G. Sobolev, I.N. Kukhtina, et al., Phys. At. Nucl. 80, 32 (2017).CrossRefGoogle Scholar
  15. 15.
    M. S. Hussein and K. W. McVoy, Prog. Part. Nucl. Phys. 12, 103 (1984).ADSCrossRefGoogle Scholar
  16. 16.
    V. I. Zagrebaev, Nuclear Reactions with Heavy Ions (JINR, Dubna, 2016) [in Russian].Google Scholar
  17. 17.
    V. I. Zagrebaev, A. S. Denikin, A. V. Karpov, A. P. Alekseev, M. A. Naumenko, V. A. Rachkov, V. V. Samarin, and V. V. Saiko, NRV Low Energy Nuclear Knowledge Base. Scholar
  18. 18.
    A. Nadasen, T. Stevens, J. Farhat, et al., Phys. Rev. C 47, 674 (1993).ADSCrossRefGoogle Scholar
  19. 19.
    P. Schwandt, W. W. Jacobs, M. D. Kaitchuck, et al., Phys. Rev. C 24, 1522 (1981).ADSCrossRefGoogle Scholar
  20. 20.
    N. Anantaraman, H. W. Fulbright, and P. M. Stwertka, Phys. Rev. C 22, 501 (1980).ADSCrossRefGoogle Scholar
  21. 21.
    M. Sinha, S. Roy, P. Basu, et al., EPJWeb Conf. 17, 03004 (2011).CrossRefGoogle Scholar
  22. 22.
    A. Nadasen, J. Brusoe, J. Farhat, et al., Phys. Rev. C 52, 1894 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    M. Lewitowicz, C. Borcea, F. Carstoiu, et al., Nucl. Phys. A 562, 301 (1993).ADSCrossRefGoogle Scholar
  24. 24.
    P. Schumacher, N. Ueta, H. H. Duhm, et al., Nucl. Phys. A 212, 573 (1973).ADSCrossRefGoogle Scholar
  25. 25.
    A. Pakou, N. Alamanos, G. Doukelis, et al., Phys. Rev. C 69, 054602 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    A. Winther, Nucl. Phys. A 572, 191 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    S. M. Smith, G. Tibell, A. A. Cowley, et al., Nucl. Phys. A 207, 273 (1973).ADSCrossRefGoogle Scholar
  28. 28.
    N. Baron, R. F. Leonard, and W. M. Stewart, Phys. Rev. C 4, 1159 (1971).ADSCrossRefGoogle Scholar
  29. 29.
    J. L. Lou, Y. L. Ye, D. Y. Pang, et al., Phys. Rev. C 83, 034612 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    J. S. Al-Khalili, M. D. Cortina-Gil, P. Roussel-Chomaz, et al., Phys. Lett. B 378, 45 (1996).ADSCrossRefGoogle Scholar
  31. 31.
    V. Lapoux, N. Alamanos, F. Auger, et al., Phys. Rev. C 66, 034608 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    D. Smalley, F. Sarazin, F. M. Nunes, et al., Phys. Rev. C 89, 024602 (2014).ADSCrossRefGoogle Scholar
  33. 33.
    M. Milin, S. Cherubini, T. Davinson, et al., Nucl. Phys. A 730, 285 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    A. N. Ostrowski, A. C. Shotter, W. Galster, et al., Phys. Rev. C 60, 064603 (1999).ADSCrossRefGoogle Scholar
  35. 35.
    V. I. Kukulin, V. V. Krasnopol’sky, V. T. Voronchev, and P. B. Sazonov, Nucl.Phys. A 453, 365 (1986).ADSCrossRefGoogle Scholar
  36. 36.
    E. T. Ibraeva, M. A. Zhusupov, O. Imambekov, and S. K. Sakhiev, Phys. Part. Nucl. 42, 847 (2011).CrossRefGoogle Scholar
  37. 37.
    M. V. Zhukov, B. V. Danilin, D. V. Fedorov, et al., Phys. Rep. 231, 151 (1993).ADSCrossRefGoogle Scholar
  38. 38.
    A. S. Davydov, Quantum Mechanics (Nauka, Moscow, 1973; Pergamon, Oxford, 1965).Google Scholar
  39. 39.
    V. V. Samarin, Phys. At. Nucl. 78, 128 (2015).CrossRefGoogle Scholar
  40. 40.
    M. A. Naumenko, V. V. Samarin, Yu. E. Penionzhkevich, and N. K. Skobelev, Bull. Russ. Acad. Sci. Phys. 80, 264 (2016).CrossRefGoogle Scholar
  41. 41.
    H. de Vries, C.W. de Jager, and C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).ADSCrossRefGoogle Scholar
  42. 42.
    S. W. Brain, A. Johnston, W. A. Gillespie, et al., J. Phys. G 3, 821 (1977).ADSCrossRefGoogle Scholar
  43. 43.
    R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956).ADSCrossRefGoogle Scholar
  44. 44.
    P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables 109–110, 1 (2016).CrossRefGoogle Scholar
  45. 45.
    I. Sick, Phys. Lett. B 116, 212 (1982).ADSCrossRefGoogle Scholar
  46. 46. Scholar
  47. 47.
    V. V. Samarin, Bull. Russ. Acad. Sci.: Phys. 78, 1124 (2014).CrossRefGoogle Scholar
  48. 48.
    L. R. Suelzle, M. R. Yearian, and H. Crannell, Phys. Rev. 162, 992 (1967).ADSCrossRefGoogle Scholar
  49. 49.
    V. V. Samarin and M. A. Naumenko, Bull. Russ. Acad. Sci.: Phys. 80, 283 (2016).CrossRefGoogle Scholar
  50. 50.
    M. A. Naumenko and V. V. Samarin, Supercomp. Front. Innov. 3, 80 (2016). Scholar
  51. 51.
    H. Kanada, T. Kaneko, S. Nagata, and M. Nomoto, Prog. Theor. Phys. 61, 1327 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Yu. E. Penionzhkevich
    • 1
    • 2
  • Yu. G. Sobolev
    • 1
  • V. V. Samarin
    • 1
    • 3
  • M. A. Naumenko
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia
  3. 3.Dubna State UniversityDubna, Moscow oblastRussia

Personalised recommendations